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The Hockey Stick
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A bundle of Hockey Sticks
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Different proxies
White How fast can climate change? Evidence from the past

(a) Tree rings (b) An ice core

(c) A non-biting midge (chironomid) (d) Alder pollen

Figure 1 – Different types of climate proxy

Figure 2 – The GISP2 ice core from Greenland. The horizontal axis shows time going back 100,000 years, the vertical
axis shows the δ18Omeasurement, a climate proxy representing temperature
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Pollen depth plots
How fast can climate change? Evidence from the past White

Figure 3 – A simpliϐied pollen diagram for a core taken from the lower lake at Glendalough. The vertical axis shows the
depth at which the pollen sample was taken, the horizontal axes show the proportions of 4 different varieties
of pollen; Alder, Pine, Hazel and Grass.

different species all of which prefer slightly differ-
ent climates⁶. This multi-species feature manifests
itself in bumpy response surfaces; a similar feature
is shown in the Alder response surface in Figure 4.

4 Estimating the timing of past climate shifts

Turning the pollen percentages from a lake sediment
core into aspects of climate is only half of the recon-
struction task. The other half of the task involves cal-
culating the timing of past climatic changes. If we re-
turn to Figure 3, we can see that the big shift from
grasses to trees came over the space of around 1me-
tre of sediment (between around 11 and 12 metres
down the core). Thismay appear to be a rapid change
but without knowing the age of the different parts of
the core, we have no idea of how rapid this change
was. Suppose, for example, that the layer at 11 me-
tres down was formed 4,000 years ago, but the layer
12 metres down was formed 10,000 years ago. This
would mean that this rapid change occurred over
6,000 years. Not a very rapid change! It is vital we es-
timate the ages of the layers; this is equivalent to cal-
culating the sedimentation rate at which the pollen
was deposited in the lake.
Radiocarbon dating is the method most often used

in estimating the ages of the different slices taken
from the core. Over the past few decades, radiocar-

bon dating has vastly improved in terms of precision
and greatly reduced in cost⁷. It can be used to date
any object, provided it ismade from carbon. The lake
sediment cores we use are full of plant waste and
thus ideally suited to radiocarbon dating. The pollen
grains themselves are too small to use but it is per-
fectly feasible to use mud from the core or, prefer-
ably, items like seeds which allow for much greater
precision.
The main problem to be overcome when using ra-

diocarbon dates is that it is often still too expensive
to date every single layer in the core. Many sites will
only contain 3 or 4 radiocarbon dates for various dif-
ferent depths. Coupled with this, the radiocarbon
dates will contain a reasonable level of uncertainty,
with precision ranging from around 50 to 200 years.
Our taskhere is then to estimate the agesof all thedif-
ferent layers where pollen has been counted whilst
taking into account the uncertainty. We can make
use of some extra information as we know that the
older pollen must have been deposited at the bottom
of the core and the more modern pollen deposited at
the top.
To complete the task we use a sophisticated statis-

tical modelling package called Bchron⁸ [8]. Bchron
combines all the radiocarbon dating information
(with uncertainty) to form a chronology for the re-
lationship between the depth and the age of the core.

⁶ See, for example, http://www.juniperus.org/
⁷ See http://www.radiocarbon.org/Info/index.html for more information
⁸ See also http://cran.r-project.org/web/packages/Bchron/index.html
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A Lago Grando di Monticchio

(By Pitichinaccio - Own work, Public Domain)
7 / 33



Cape May, New Jersey

(By Smallbones - Own work, CC0)
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From pictures to data

Year Climate Proxy data
2016 climate2016 proxy1,2016 proxy2,2016 . . . proxyp,2016
2015 climate2015 proxy1,2015 proxy2,2015 . . . proxyp,2015
...

...
...

... . . .
...

1850 climate1850 proxy1,1850 proxy2,1850 . . . proxyp,1850

1849 climate1849 proxy1,1849 proxy2,1849 . . . proxyp,1849
...

...
...

... . . .
...

1001 climate1001 proxy1,1001 proxy2,1001 . . . proxyp,1001
1000 climate1000 proxy1,1000 proxy2,1000 . . . proxyp,1000
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A more general version

Calibration data set:
ID Climate Proxy data
1 climate1 proxy1,1 proxy2,1 . . . proxyp,1
2 climate2 proxy1,2 proxy2,2 . . . proxyp,2
...

...
...

... . . .
...

k climatek proxy1,k proxy2,k . . . proxyp,k

Fossil data set:
Year Climate Proxy data
n-1 climaten−1 proxy1,n−1 proxy2,n−1 . . . proxyp,n−1
...

...
...

... . . .
...

m +1 climatem+1 proxym+1 proxym+1 . . . proxyp,m+1
m climatem proxy1,m proxy2,m . . . proxyp,m
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Some notation

Let:
I y be the ancient proxy data. Time indexed and usually

multivariate
I c be ancient ‘climate’. Time indexed and occasionally

multivariate. Sometimes spatial too
I ycal be the proxy data for the calibration period
I ccal be the climate data for the calibration period

Aim is to find c|y , ycal, ccal
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The regression version

Write:
ccal = f (ycal) + ε

f might be a linear regression or involve some dimension reduction
or variable selection.

Then create:
ĉ = f̂ (y)

Problem solved!
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Problems with this approach
Statistical:

I Hard to do model checking on f due to the size and nature of
the calibration data

I c is often multivariate so people often pick one dimension
I The calibration period may be autocorrelated, leading to many

spurious relationships
I Dimension reduction approaches will be very sensitive to the

number of components chosen
I Lots of missing proxy data

Biological:
I The causation is the wrong way round. Changes in climate
cause changes in proxy values

I The uncertainty in the proxies is usually substantial and not
included

I The proxies might not be sensitive to northern hemisphere
annual temperature, or any other chosen aspect of climate
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A better way?

Instead write:
ycal = f (ccal) + ε

f is known here as a forward model since it works in the causal
direction. We can now include physical knowledge of how climate
affects the proxies

Now use Bayes:

p(c|y , ycal, ccal) ∝ p(ycal|ccal)p(y |c)p(c)

We have the extra advantage that we can include a prior
distribution p(c) on the climate process
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Bayesian palaeoclimate reconstruction in more detail

p(c, θ, φ|y , ycal, ccal) ∝ p(ycal|ccal, θ)p(y |c, θ)p(c|φ)p(θ, φ)

I p(θ, φ) is a prior on the parameters that control the
proxy/climate relationship, and climate dynamics respectively

I p(c|φ) is a prior distribution on climate dynamics. This might
be a simple statistical time series model (e.g. a random walk)
all the way up to a full general circulation model

I p(y |c, θ) is the forward model again, but this time applied to
the missing ancient climates

I p(ycal|ccal, θ) is the forward model applied to the calibration
data.
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Why is this not the standard way people do this?

1. Building forward models is hard because you need a good
calibration data set, some statistical modelling knowledge
(especially with multivariate data), and some knowledge of the
pollen/climate relationship

2. People want to avoid testing their models (out of sample
evaluation etc)

3. Finding a good prior for climate dynamics is hard, especially if
you have timing uncertainty

4. Bayes is still not common in climate science
5. Fitting this model to large calibration data sets is hard
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Example: sea level rise in East Coast USA

I ym is 18D counts of different Foramnifera species
I cm is 1D - sea level
I 172 modern samples altogether
I y is also 18D made up of approx 150 layers

Fit the model:

p(c, θ, φ|y , ycal, ccal) ∝ p(ycal|ccal, θ)p(y |c, θ)p(c|φ)p(θ, φ)
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Model details

The forward model is:

[y1, . . . , y28] ∼ Mult(N, {p1, . . . , p28})

where, e.g.
pl = exp(θl (c))∑

j exp(θj(c))

- Each θ is then given an independent P-spline with its own
smoothness
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Forward model output

Figure 4: The response of foraminifera species to elevation estimated from the modern training
set using the Bayesian transfer function. The blue circles represent the probabilites of species
occurance as determined from the raw count data (empirical probabilities). The response
probabilites of occurance estimated by the Bayesian transfer function model are shown in red with
a mean (heavy line), a credible interval for the mean (light line), and a prediction interval (dashed
line). The green vertical lines represent the species optimum determined from the weighted
average transfer function.

5.1.2 Cross validation of the modern data

Performance of the new B-TF and existing WA-TF was judged using 10-fold cross validation
(Figure 5).The uncertainty bounds (±2s) for elevations predicted by the B-TF contained the true
elevation 90% of the time compared to 92% for the WA-TF. The average 2s uncertainties are
larger in the WA-TF (28 SWLI) than in the B-TF (21 SWLI). The pattern of residuals in the WA-TF
displayed a structure in which the elevation of low salt-marsh samples is over predicted
(negative residuals) and the elevation of high salt-marsh samples is under predicted (positive
residuals). For example, the WA-TF showed an average residual of -16.6 between ⇠10 and ⇠70
SWLI and an average residual of 22.5 between ⇠120 and ⇠140 SWLI. This structure is absent in
the B-TF suggesting that this model is better suited to reconstructing values close to the extremes
of the sampled elevational gradient.

15

19 / 33



Sea level prior

I Our interest in sea level is in rates of change so we place an
integrated Gaussian process prior on c over time t:

c(t) =
∫ t

0
w(u) ∂u

I We place a Gaussian process prior on w with informative priors
on the mean and coavariance matrix

I The model is complicated by the presence of measurement
error in time

I Our output can be either sea level c or rate w , the latter more
useful
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Rate of sea level rise (mm/yr) for New Jersey, USA

Figure 6: The EIV-IGP model results for reconstructions produced using the B-TF, the WA-TF
and the multi- proxy Bayesian transfer function. The upper panel shows individual data points
(represented by rectangular boxes that illustrate the 95% confidence region) and include age and
relative sea-level uncertainties. The middle panels show the posterior fit of the errors-in-variables
integrated Gaussian process model to the relative sea-level reconstructions. Solid line represents
the mean fit with the 68% and 95% credible intervals (C.I.) denoted by shading. The lower
panels are the rates of relative sea-level (RSL) change. Shading denotes 68% and 95% credible
intervals (C.I.) for the posterior mean of the rate process. The average rate for each phase of the
reconstruction is given (in mm/yr) with a 95% credible interval.

However, there are some differences among the three reconstructions. For example, the B-TF
shows the highest modern rate of rise at 4.1 mm/yr (95% C.I. 3.27-4.92 mm/yr) in 2000 CE
compared to 3.16 mm/yr (95% C.I. 2.68-3.65 mm/yr) and 3.11 mm/yr (95% C.I. 2.45-3.77
mm/yr) for the multi-proxy B-TF and the WA-TF respectively. The B-TF consistently estimated
RSL lower than the multi-proxy B-TF and the WA-TF between ⇠1400 to ⇠1700, resulting in the
observed difference in the rates into the 21st century. When compared to the observed tide-gauge
data for the last ⇠100 years from New Jersey (Figure 7), the quality of the estimated RSL
mid-point reconstructions can be assessed using mean squared error (MSE). For the multi-proxy
B-TF the MSE was estimated at 0.003 m2 compared to 0.014 m2 for the B-TF and the WA-TF,
indicating that the multi-proxy B-TF mid-points provide better estimates for RSL in comparison
to the B-TF and the WA-TF.

18
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Example 2: multivariate climate in Italy

I This time:
I ym is 28D counts of different pollen types
I cm is 3D - two temperature and a moisture variable
I 15000 modern samples altogether
I y is also 28 made up of approx 900 layers

I Same model:

p(c, θ, φ|y , ycal, ccal) ∝ p(ycal|ccal, θ)p(y |c, θ)p(c|φ)p(θ, φ)

I Impossible to fit the above model in one go. Need
approximations
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Approximations

p(c, θ, φ|y , ycal, ccal) ∝ p(ycal|ccal, θ)p(y |c, θ)p(c|φ)p(θ, φ)

I Information on forward model parameters θ almost exclusively
from modern data, so fit this separately using INLA or similar

I If the modern calibration data massively outweighs the fossil
data and the prior on c is intrinsic over time, then you can
show you get pretty much the full model back
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Monticchio - climate prior

I A nice intrinsic prior is a random walk
I An even nicer intrinsic prior is a Normal-Inverse Gaussian

random walk

c(t)− c(t − δ) ∼ N(µ, v(δ)), v ∼ IG(φ1, φ2)

I More informative priors on φ1, φ2
I Fit this model as a second stage using the posterior of the

parameter estimates from the modern data
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Monticchio - moisture

Monticchio proportion of moisture available to plants
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Example 2: Histories

Monticchio proportion of moisture available to plants

Age (k cal years BP)
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Example 2: First differences - the speed of climate change
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Monticchio: millennial (sliding window) first difference mean +/− 1 standard deviation
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The grand challenge!

Fit a Bayesian model to:

- Reconstruct spatio-temporal palaeoclimate ...

- ... using physical/statistical forward models for many proxies
- ... and physical/statistical models for climate dynamics

The resulting output should be a large sample of spatio-temporal
climate histories

28 / 33



The grand challenge!

Fit a Bayesian model to:

- Reconstruct spatio-temporal palaeoclimate ...
- ... using physical/statistical forward models for many proxies

- ... and physical/statistical models for climate dynamics

The resulting output should be a large sample of spatio-temporal
climate histories

28 / 33



The grand challenge!

Fit a Bayesian model to:

- Reconstruct spatio-temporal palaeoclimate ...
- ... using physical/statistical forward models for many proxies
- ... and physical/statistical models for climate dynamics

The resulting output should be a large sample of spatio-temporal
climate histories

28 / 33



The grand challenge!

Fit a Bayesian model to:

- Reconstruct spatio-temporal palaeoclimate ...
- ... using physical/statistical forward models for many proxies
- ... and physical/statistical models for climate dynamics

The resulting output should be a large sample of spatio-temporal
climate histories

28 / 33



Challenges 1: fitting state space models to large and
complex data sets

What we really have is an externally calibrated state-space model
in continuous time:

ycal(t) ∼ fθ(ccal(t))
y(t) ∼ fθ(c(t))

c(t)− c(t −∆) ∼ gφ(∆)

I Fitting these models is hard when all the quantities are
multivariate and f is a complex function

I Pseudo-marginal particle approaches seem to be the way to go
for single-site models

I No obvious method yet for multi-site models. Perhaps an
extension of SPDE-INLA?
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Challenges 2: Incorporating mechanistic models
A more complex version:

ycal(s, t) ∼ fθ(ccal(s, t))
y(s, t) ∼ fθ(c(s, t))
c(s, t) ∼ gφ(c(s̃, t−))

I The problem gets even trickier if f and g above are
deterministic models

I Some quite complex deterministic models have been suggested
for pollen/climate. Not many for other proxies

I Quite a few simple climate models that might work over the
palaeoclimate period, e.g. Saltzman and Maasch, 1991:

For Review Only

Bayesian model selection for the glacial-interglacial cycle 7

gorithm to compute these quantities with sufficient accuracy for the late Pleistocene is provided in

Berger (1978). More accurate, time indexed data are provided by Laskar et al. (2004) but the gain

in accuracy is not critical in this context.

The geometry of ice sheets and snow line suggest that a positive insolation anomaly may lead

to a greater ice volume change, than a negative one (Ruddiman, 2006). To account for this, some

authors truncate the astronomical forcing to down-weight negative anomalies. Here, we introduce

the truncation operator

f(x) =

⎧
⎨
⎩

x +
√

4a2 + x2 − 2a if x ≤ 0

x otherwise,

which is used in model PP12 defined below (Paillard, 1998; Parrenin and Paillard, 2012).

2.3. Phenomenological models of climate dynamics

We consider three models of the climate dynamics. They were each originally proposed as low-

order ordinary differential equations, with state vector XXX(t) =
(
X(1)(t), ..., X(d)(t)

)⊤
, where d is the

dimension of the model, with the first component X(1) representing global ice volume. The other

components represent quantities such as glaciation state, or CO2 concentration. In order to account

for model errors, we convert the models into stochastic differential equations by the addition of a

Brownian motion WWW (t). These models were chosen as each models the glacial–interglacial cycle using

a qualitatively different dynamical mechanism, as explained further below. For notational convenience

we drop the explicit dependence of XXX and WWW on t.

Model SM91: (Saltzman and Maasch, 1991)

SM91 models glacial–interglacial cycles as a system of three SDEs,

dX(1) = −
(
X(1) + X(2) + vX(3) + F (γP , γC , γE)

)
dt + σ1dW(1)

dX(2) =
(
rX(2) − pX(3) − sX2

(2) − X3
(2)

)
dt + σ2dW(2)

dX(3) = −q
(
X(1) + X(3)

)
dt + σ3dW(3)

in which variables X(2) and X(3) represent CO2 concentration in the atmosphere and deep-sea ocean

temperature, respectively. The model exhibits limit-cycle dynamics, oscillating with a periodicity

of around 100 kyr, although this is also controlled by the astronomical forcing. The model is an

expression of the hypothesis that carbon-cycle effects are critical for the emergence of glacial cycles.

Hence the non-linear terms, which are responsible for the oscillation, are present in the second equation

only. SM91 is non-dimensional with a reference value of 10 kyr for t.
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Back to the future: can we do better than this?
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Summary

I A Bayesian model with an improved forward model and richer
climate process for multiple sites and proxies is the ultimate
research goal

I We need help with Bayesian computation for large multivariate
non-linear non-Gaussian state space models

I We need help with combining deterministic/stochastic elements
in forward models and climate models

I We must do better than the Hockey Stick!
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