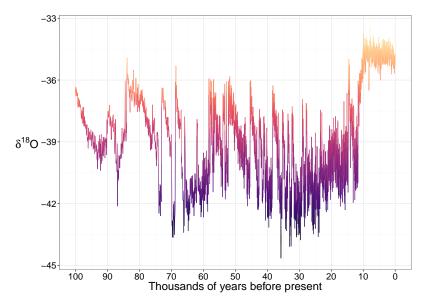
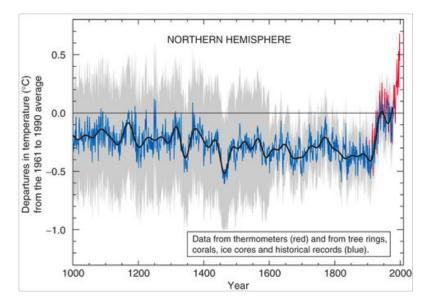
Statistical palaeoclimate reconstruction: how fast can climate change?

Andrew Parnell andrew.parnell@ucd.ie

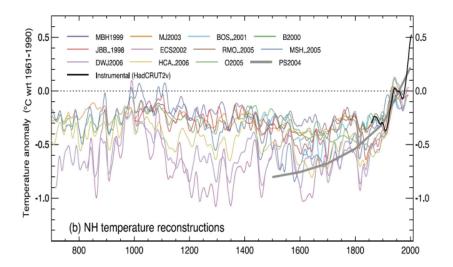
The GISP 2 ice core



The Hockey Stick

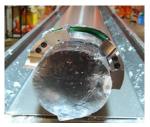


A bundle of Hockey Sticks



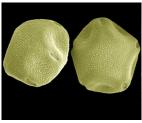
Different proxies

(a) Tree rings



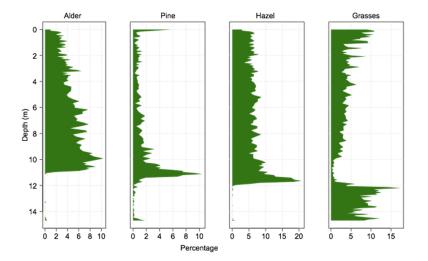
(b) An ice core

(c) A non-biting midge (chironomid)



(d) Alder pollen

Pollen depth plots



A Lago Grando di Monticchio

(By Pitichinaccio - Own work, Public Domain)

Cape May, New Jersey

(By Smallbones - Own work, CC0)

From pictures to data

Year	Climate		Proxy	data	
2016	climate ₂₀₁₆	proxy _{1,2016}	proxy _{2,2016}		proxy _{<i>p</i>,2016}
2015	climate ₂₀₁₅	proxy _{1,2015}	$proxy_{2,2015}$		$proxy_{p,2015}$
:	:	÷	÷		:
1850	climate ₁₈₅₀	proxy _{1,1850}	proxy _{2,1850}		proxy _{<i>p</i>,1850}
1849	climate ₁₈₄₉	proxy _{1,1849}	proxy _{2,1849}		proxy _{p,1849}
:	:	÷	÷		:
1001	climate ₁₀₀₁	proxy _{1,1001}	proxy _{2,1001}		proxy _{p,1001}
1000	climate ₁₀₀₀	proxy _{1,1000}	proxy _{2,1000}		proxy _{p,1000}

A more general version

Calibration data set:

ID	Climate	Proxy data				
1	climate ₁	proxy _{1,1}	proxy _{2,1}		$proxy_{p,1}$	
2	climate ₂	proxy _{1,2}	proxy _{2,2}		$proxy_{p,2}$	
:	:	÷	÷		÷	
k	climate _k	proxy _{1,k}	proxy _{2,k}		proxy _{p,k}	

Fossil data set:

Year	Climate	Proxy data			
n-1	climate _{n-1}	$proxy_{1,n-1}$	$proxy_{2,n-1}$		$proxy_{p,n-1}$
	:	:	÷		÷
m+1 m	$climate_{m+1}$ $climate_m$	$proxy_{m+1}$ $proxy_{1,m}$	$proxy_{m+1}$ $proxy_{2,m}$		$proxy_{p,m+1}$ $proxy_{p,m}$

Some notation

Let:

- y be the ancient proxy data. Time indexed and usually multivariate
- c be ancient 'climate'. Time indexed and occasionally multivariate. Sometimes spatial too
- y^{cal} be the proxy data for the calibration period
- \triangleright c^{cal} be the climate data for the calibration period

Aim is to find $c|y, y^{cal}, c^{cal}$

The regression version

Write:

$$c^{\mathsf{cal}} = f(y^{\mathsf{cal}}) + \epsilon$$

f might be a linear regression or involve some dimension reduction or variable selection.

The regression version

Write:

$$c^{\mathsf{cal}} = f(y^{\mathsf{cal}}) + \epsilon$$

f might be a linear regression or involve some dimension reduction or variable selection.

Then create:

$$\hat{c} = \hat{f}(y)$$

Problem solved!

Problems with this approach

Statistical:

- Hard to do model checking on f due to the size and nature of the calibration data
- c is often multivariate so people often pick one dimension
- The calibration period may be autocorrelated, leading to many spurious relationships
- Dimension reduction approaches will be very sensitive to the number of components chosen
- Lots of missing proxy data

Problems with this approach

Statistical:

- Hard to do model checking on f due to the size and nature of the calibration data
- c is often multivariate so people often pick one dimension
- The calibration period may be autocorrelated, leading to many spurious relationships
- Dimension reduction approaches will be very sensitive to the number of components chosen
- Lots of missing proxy data

Biological:

- The causation is the wrong way round. Changes in climate cause changes in proxy values
- The uncertainty in the proxies is usually substantial and not included
- The proxies might not be sensitive to northern hemisphere annual temperature, or any other chosen aspect of climate

A better way?

Instead write:

$$y^{\mathsf{cal}} = f(c^{\mathsf{cal}}) + \epsilon$$

f is known here as a **forward model** since it works in the causal direction. We can now include physical knowledge of how climate affects the proxies

A better way?

Instead write:

$$y^{\mathsf{cal}} = f(c^{\mathsf{cal}}) + \epsilon$$

f is known here as a **forward model** since it works in the causal direction. We can now include physical knowledge of how climate affects the proxies

Now use Bayes:

$$p(c|y, y^{cal}, c^{cal}) \propto p(y^{cal}|c^{cal})p(y|c)p(c)$$

We have the extra advantage that we can include a prior distribution p(c) on the climate process

Bayesian palaeoclimate reconstruction in more detail

$p(c, \theta, \phi | y, y^{cal}, c^{cal}) \propto p(y^{cal} | c^{cal}, \theta) p(y | c, \theta) p(c | \phi) p(\theta, \phi)$

- p(θ, φ) is a prior on the parameters that control the proxy/climate relationship, and climate dynamics respectively
- ▶ p(c|φ) is a prior distribution on climate dynamics. This might be a simple statistical time series model (e.g. a random walk) all the way up to a full general circulation model
- ▶ p(y|c, θ) is the forward model again, but this time applied to the missing ancient climates
- $p(y^{cal}|c^{cal}, \theta)$ is the forward model applied to the calibration data.

Why is this not the standard way people do this?

- Building forward models is hard because you need a good calibration data set, some statistical modelling knowledge (especially with multivariate data), and some knowledge of the pollen/climate relationship
- 2. People want to avoid testing their models (out of sample evaluation etc)
- 3. Finding a good prior for climate dynamics is hard, especially if you have timing uncertainty
- 4. Bayes is still not common in climate science
- 5. Fitting this model to large calibration data sets is hard

Example: sea level rise in East Coast USA

- ▶ *y^m* is 18D counts of different **Foramnifera** species
- c^m is 1D sea level
- 172 modern samples altogether
- ▶ y is also 18D made up of approx 150 layers

Fit the model:

$$p(c, \theta, \phi | y, y^{cal}, c^{cal}) \propto p(y^{cal} | c^{cal}, \theta) p(y | c, \theta) p(c | \phi) p(\theta, \phi)$$

Model details

The forward model is:

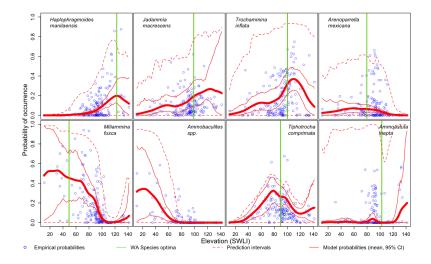
$$[y_1, \ldots, y_{28}] \sim Mult(N, \{p_1, \ldots, p_{28}\})$$

where, e.g.

$$p_l = rac{\exp(heta_l(c))}{\sum_j \exp(heta_j(c))}$$

- Each $\boldsymbol{\theta}$ is then given an independent P-spline with its own smoothness

Forward model output



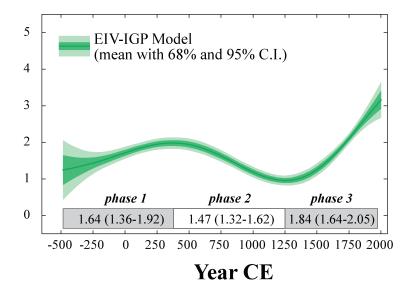
Sea level prior

Our interest in sea level is in rates of change so we place an integrated Gaussian process prior on c over time t:

$$c(t)=\int_0^t w(u)\,\partial u$$

- ▶ We place a Gaussian process prior on w with informative priors on the mean and coavariance matrix
- The model is complicated by the presence of measurement error in time
- Our output can be either sea level c or rate w, the latter more useful

Rate of sea level rise (mm/yr) for New Jersey, USA



Example 2: multivariate climate in Italy

This time:

- y^m is 28D counts of different pollen types
- c^m is 3D two temperature and a moisture variable
- 15000 modern samples altogether
- ▶ y is also 28 made up of approx 900 layers

Same model:

$$p(c, \theta, \phi | y, y^{cal}, c^{cal}) \propto p(y^{cal} | c^{cal}, \theta) p(y | c, \theta) p(c | \phi) p(\theta, \phi)$$

 Impossible to fit the above model in one go. Need approximations

Approximations

 $p(c, \theta, \phi | y, y^{cal}, c^{cal}) \propto p(y^{cal} | c^{cal}, \theta) p(y | c, \theta) p(c | \phi) p(\theta, \phi)$

- Information on forward model parameters θ almost exclusively from modern data, so fit this separately using INLA or similar
- If the modern calibration data massively outweighs the fossil data and the prior on c is intrinsic over time, then you can show you get pretty much the full model back

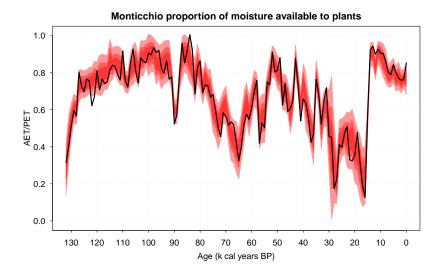
Monticchio - climate prior

- A nice intrinsic prior is a random walk
- An even nicer intrinsic prior is a Normal-Inverse Gaussian random walk

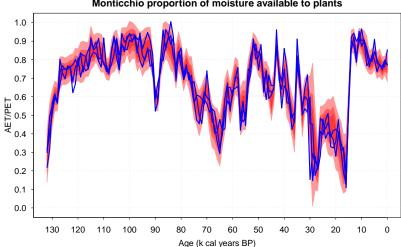
$$c(t) - c(t - \delta) \sim N(\mu, v(\delta)), \ v \sim IG(\phi_1, \phi_2)$$

- More informative priors on ϕ_1, ϕ_2
- Fit this model as a second stage using the posterior of the parameter estimates from the modern data

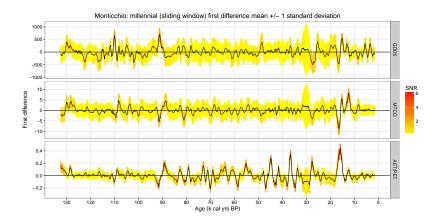
Monticchio - moisture



Example 2: Histories



Example 2: First differences - the speed of climate change



The grand challenge!

Fit a Bayesian model to:

- Reconstruct spatio-temporal palaeoclimate ...

Fit a Bayesian model to:

- Reconstruct spatio-temporal palaeoclimate ...

- \ldots using physical/statistical forward models for many proxies

Fit a Bayesian model to:

- Reconstruct spatio-temporal palaeoclimate ...
- \ldots using physical/statistical forward models for many proxies
- \ldots and physical/statistical models for climate dynamics

Fit a Bayesian model to:

- Reconstruct spatio-temporal palaeoclimate ...
- ... using physical/statistical forward models for many proxies
- \ldots and physical/statistical models for climate dynamics

The resulting output should be a large sample of spatio-temporal climate histories

Challenges 1: fitting state space models to large and complex data sets

What we really have is an **externally calibrated** state-space model in continuous time:

Challenges 1: fitting state space models to large and complex data sets

What we really have is an **externally calibrated** state-space model in continuous time:

$$egin{array}{rll} y^{\mathsf{cal}}(t) &\sim f_{ heta}(c^{\mathsf{cal}}(t)) \ y(t) &\sim f_{ heta}(c(t)) \ c(t) - c(t-\Delta) &\sim g_{\phi}(\Delta) \end{array}$$

- Fitting these models is hard when all the quantities are multivariate and f is a complex function
- Pseudo-marginal particle approaches seem to be the way to go for single-site models
- No obvious method yet for multi-site models. Perhaps an extension of SPDE-INLA?

Challenges 2: Incorporating mechanistic models

A more complex version:

$$y^{\mathsf{cal}}(s,t) \sim f_{\theta}(c^{\mathsf{cal}}(s,t))$$

 $y(s,t) \sim f_{\theta}(c(s,t))$
 $c(s,t) \sim g_{\phi}(c(\tilde{s},t^{-}))$

Challenges 2: Incorporating mechanistic models

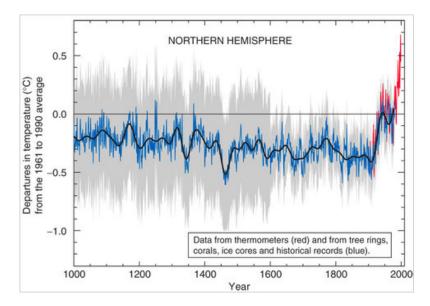
A more complex version:

$$egin{array}{rl} y^{\mathsf{cal}}(s,t) &\sim & f_{ heta}(c^{\mathsf{cal}}(s,t)) \ y(s,t) &\sim & f_{ heta}(c(s,t)) \ c(s,t) &\sim & g_{\phi}(c(\widetilde{s},t^-)) \end{array}$$

- The problem gets even trickier if f and g above are deterministic models
- Some quite complex deterministic models have been suggested for pollen/climate. Not many for other proxies
- Quite a few simple climate models that might work over the palaeoclimate period, e.g. Saltzman and Maasch, 1991:

$$\begin{aligned} dX_{(1)} &= -\left(X_{(1)} + X_{(2)} + vX_{(3)} + F(\gamma_P, \gamma_C, \gamma_E)\right) dt + \sigma_1 dW_{(1)} \\ dX_{(2)} &= \left(rX_{(2)} - pX_{(3)} - sX_{(2)}^2 - X_{(2)}^3\right) dt + \sigma_2 dW_{(2)} \\ dX_{(3)} &= -q\left(X_{(1)} + X_{(3)}\right) dt + \sigma_3 dW_{(3)} \end{aligned}$$

Back to the future: can we do better than this?



Summary

- A Bayesian model with an improved forward model and richer climate process for multiple sites and proxies is the ultimate research goal
- We need help with Bayesian computation for large multivariate non-linear non-Gaussian state space models
- We need help with combining deterministic/stochastic elements in forward models and climate models
- We must do better than the Hockey Stick!

References

- Cahill, N. Kemp, A.C.; Horton, B.P., and Parnell, A.C. (2015) Modeling sea-level change using errors-in-variables integrated Gaussian processes. Annals of Applied Statistics, 9(2), 547–571
- Cahill, N., Kemp, A. C., Horton, B. P., and Parnell, A. C. (2016). A Bayesian hierarchical model for reconstructing relative sea level: from raw data to rates of change. Climate of the Past, 12(2), 525–542.
- Parnell, A. C., Sweeney, J., Doan, T. K., Salter-Townshend, M., Allen, J. R., Huntley, B., and Haslett, J. (2015). Bayesian inference for palaeoclimate with time uncertainty and stochastic volatility. Journal of the Royal Statistical Society: Series C (Applied Statistics), 64(1), 115–138.