Extreme Climatic Events:

Impacts for Ireland

John O'Sullivan, Conor Sweeney, and Andrew Parnell andrew.parnell@ucd.ie

UCD School of Mathematics and Statistics

UCD Earth Institute

Better understand today's world. Inform solutions for tomorrow.

What is this talk about?

- We want to predict extreme temperatures, wind speeds, and rainfall for Ireland up to 2100
- We have a large set of data covering 50 years of weather in Ireland
- We have some down-scaled climate model runs of weather/climate up to 2100
- We want to use all this information together to estimate past, present and future extremes whilst accounting for uncertainty
- In this talk I'm only going to cover changes in past extremes

What is climate and what are extremes?

Some comments

- These plots are still an over-simplification (e.g. skew/multi-modal/multivariate distributions)
- Thinking about climate changes only in terms of the mean is not sufficient in determining the frequency or size of extreme events
- If we are interested in extremes we need to focus on the tail behaviour of the probability distribution
- The discipline of Extreme Value Theory was invented to determine changes in maxima (or minima) of series. It is not widely taught

The amazing Fisher-Tippett-Gnedenko theorem

- A remarkable theorem: repeatedly take the maxima of any distribution and you will end up with a Generalised Extreme Value (GEV) distribution

The amazing Fisher-Tippett-Gnedenko theorem

- A remarkable theorem: repeatedly take the maxima of any distribution and you will end up with a Generalised Extreme Value (GEV) distribution

Extreme Value Theory

- We can use the GEV distribution to model the tail behaviour of the distribution
- There are two key parameters, the scale, which measures how spread out the distribution is, and the shape, which measures how long-tailed the distribution is
- If the shape is negative, then there is a maximum value in the data. If the shape is positive, then the data are long-tailed
- Positive shape parameters for climate are dangerous - more extreme extremes!

Where does this data come from?

- The raw data have numerous missing values from different stations at differing points in time
- Instead we use re-analysis data created by Seamus Walsh at Met Éireann. These re-analysis data are available at every grid point and every time point
- They are provided on a grid of 1 km by 1 km , totalling 72,000 grid points with over 50 years of daily data
- Over 1.3 billion data points altogether!

Our data - temporal aspect

Daily Temperature at Dublin Airport

Our data - spatial aspect

Estimating extremes at just a single site

- Suppose we took just the daily maximum temperature at one particular site, Dublin airport
- We can fit the GEV distribution to this which will estimate the shape of the distribution curve
- From the output we can create a return level plot showing how likely different extreme temperatures are at different return periods
- The return level plot is just a function of the parameters

The output: return level plots

Return level plot of daily maximum temperature at Dublin Airport 1961-1970

A slight alternative; the Generalised Pareto distribution

- The GEV has a slight disadvantage in that it only uses maxima
- An alternative, the Generalised Pareto Distribution (GPD) uses all the data above a threshold
- This means we get a better estimate of extremal behaviour, but we have to set a threshold, and can occasionally end up with more data than we can deal with
- The model fitting and output is exactly the same as the GEV

The GPD approach

Daily Temperature at Dublin Airport

Choosing a threshold

- A tricky part of using the GPD is choosing a threshold above which you keep the data and use it to estimate extremes
- If you set the threshold too low, the assumptions of the GPD aren't valid. If you set it to high you get a really poor noisy fit
- There isn't enough information in the data usually to estimate the threshold as another parameter
- Instead it is common to choose a high percentile (e.g. 99\%)
- With data that vary spatially or over time it might be necessary to vary the threshold

Variable thresholds via anomalies

Spatial modelling

- We have spatially indexed data so we want to take account of the fact that extremes at neighbouring sites are likely to be similar
- Spatial statistical modelling is a very mature field, however many people still run extreme value models separately for each site
- We use Gaussian Processes to force neighbouring sites to have similar extreme values

A short introduction to Gaussian processes

- Gaussian processes work by fitting a multivariate normal distribution to the data at hand, with a restricted correlation matrix that requires high correlation of nearby sites

Combining spatial and EVT models

We use a hierarchical model:

$$
\begin{aligned}
y_{i}(s) \sim G P D & (\sigma(s), \xi(s)), i=1, \ldots, n \\
\sigma(s) & \sim \operatorname{MVN}\left(\mu_{\sigma}, \Sigma_{\sigma}\right) \\
\xi(s) & \sim \operatorname{MVN}\left(\mu_{\xi}, \Sigma_{\xi}\right)
\end{aligned}
$$

with

$$
\mu_{\sigma}=\alpha_{\sigma}, \mu_{\xi}=\alpha_{\xi}
$$

and

$$
\Sigma_{\sigma}^{i, j}=\tau_{\sigma}^{2} \rho_{\sigma}^{i j}+\omega_{\sigma}^{2}, \Sigma_{\xi}^{i, j}=\tau_{\xi}^{2} \rho_{\xi}^{i j}+\omega_{\xi}^{2}
$$

The advantages of a model-based Bayesian approach

- Put everything into one model
- Easy to produce predictions with uncertainty
- Easy to combine lots of different data sets
- Possible to include informative external information

Computational issues

- We fit the model using Markov chain Monte Carlo
- This is a trial-and-error algorithm which produces probability distributions of the unknown parameters (e.g. $\sigma(s)$ and $\xi(s)$) given the data
- This probability distribution is joint in the sense that we have all the uncertainties and correlations between all the parameters together
- A disadvantage is that it's slow to run for big data sets, especially with nested Gaussian Processes because you have to solve a matrix at each step
- From the output we can use some Gaussian Processes tricks to produce predictions with uncertainty for any set of grid points we like

Output - Dublin region for the 1960s

Output - Dublin region for the 1960s

Output - return levels for a site

Return level plot of daily maximum temperature
at Dublin Airport 1961-1970

Output - return levels over the decades

10-year return levels: Dublin Airport

Output - changes in scale and shape

Change in Scale: 00s - 60s

Output - changes in scale and shape

Change in Shape: 00s - 60s

Spatio-temporal models

Conceptually simple to extend to spatio-temporal models:

$$
\begin{aligned}
y_{i}(s, t) \sim & G P D(\sigma(s, t), \xi(s, t)), i=1, \ldots, n \\
\sigma(s, t) & \sim \operatorname{MVN}\left(\mu_{\sigma}, \Sigma_{\sigma}\right) \\
\xi(s, t) & \sim \operatorname{MVN}\left(\mu_{\xi}, \Sigma_{\xi}\right)
\end{aligned}
$$

We then have the option of including the time series component in the mean or the covariance, or both

Challenges:

Statistical:

- Richer ways of specifying spatio-temporal models
- Richer(but more complicated) likelihoods for extremes
- Faster computational methods (SPDE-INLA, predictive processes)
Climatological:
- Incorporating climate model data, grid matching issues
- Projecting into the future

References and funding details

- The best book on statistical extreme value theory: Coles, S. An Introduction to the Statistical Modeling of Extreme Values, 2001, Springer
- A good paper on Hierarchical Bayesian modelling of extremes: Cooley, D., et al, Bayesian Spatial Modeling of Extreme Precipitation Return Levels, Journal of the American Statistical Association, 2005
- For the really advanced material, see, e.g. R. Huser and A. C. Davison. Space-time modelling of extreme events, in Journal of the royal statistical society: series B, 2014 and references therein

Funded by EPA Strive PhD fellowship 2012-CCRP-PhD.3, Presentation available at: andrewcparnell.github.io

