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Some history...
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More versions ...
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How are these reconstructions created?

Year Climate Proxy data
2016 climate2016 proxy1,2016 proxy2,2016 . . . proxyp,2016
2015 climate2015 proxy1,2015 proxy2,2015 . . . proxyp,2015
...

...
...

... . . .
...

1850 climate1850 proxy1,1850 proxy2,1850 . . . proxyp,1850
1849 climate1849 proxy1,1849 proxy2,1849 . . . proxyp,1849
...

...
...

... . . .
...

1001 climate1001 proxy1,1001 proxy2,1001 . . . proxyp,1001
1000 climate1000 proxy1,1000 proxy2,1000 . . . proxyp,1000
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Or more generally...

Calibration data set:

ID Climate Proxy data
1 climate1 proxy1,1 proxy2,1 . . . proxyp,1
2 climate2 proxy1,2 proxy2,2 . . . proxyp,2
...

...
...

... . . .
...

k climatek proxy1,k proxy2,k . . . proxyp,k

Palaeoclimate:

Year Climate Proxy data
n-1 climaten−1 proxy1,n−1 proxy2,n−1 . . . proxyp,n−1
...

...
...

... . . .
...

m+1 climatem+1 proxym+1 proxym+1 . . . proxyp,m+1

m climatem proxy1,m proxy2,m . . . proxyp,m
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Some notation

Let:

I y be the ancient proxy data. Time indexed and usually
multivariate

I c be ancient ‘climate’. Time indexed and occasionally
multivariate. Sometimes spatial too

I ycal be the proxy data for the calibration period

I ccal be the climate data for the calibration period

Aim is to find c |y , ycal, ccal
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The regression version

Write:
ccal = f (ycal) + ε

f might be a linear regression or involve some dimension reduction
or variable selection.

Then create:
ĉ = f̂ (y)

Problem solved!
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Problems with this approach

Statistical:

I Hard to do model checking on f due to the size and nature of
the calibration data

I The calibration period is autocorrelated, leading to many
spurious relationships

I Dimension reduction approaches will be very sensitive to the
number of components chosen

I Lots of missing proxy data

Biological:

I The causation is the wrong way round. Changes in climate
cause changes in proxy values

I The uncertainty in the proxies is usually substantial and not
included

I The proxies might not be sensitive to northern hemisphere
annual temperature, or any other chosen aspect of climate
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A better Bayesian way

Instead write:
ycal = f (ccal) + ε

f is known here as a forward model since it works in the causal
direction we can include physical knowledge of how climate affects
the proxies

Now use Bayes:

p(c |y , ycal, ccal) ∝ p(ycal|ccal)p(y |c)p(c)

We have the extra advantage that we can include a prior
distribution p(c) on the climate process
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Bayesian palaeoclimate reconstruction in more detail

p(c, θ, φ|y , ycal, ccal) ∝ p(ycal|ccal, θ)p(y |c , θ)p(c |φ)p(θ, φ)

I p(θ, φ) is a prior on the parameters that control the
proxy/climate relationship, and climate dynamics respectively

I p(c |φ) is a prior distribution on climate dynamics. This might
be a simple statistical time series model (e.g. a random walk)
all the way up to a full general circulation model

I p(y |c, θ) is the forward model again, but this time applied to
the missing ancient climates

I p(ycal|ccal, θ) is the forward model applied to the calibration
data.
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Why is this not the standard way people do this?

1. Building forward models is hard because you need a good
calibration data set, some statistical modelling knowledge
(especially with multivariate data), and some knowledge of
the pollen/climate relationship

2. People want to avoid testing their models (out of sample
evaluation etc)

3. Finding a good prior for climate dynamics is hard, especially if
you have timing uncertainty

4. Bayes is still not common in climate science
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Example: sea level rise in East Coast USA

I Foramnifera (or forams) live in the tidal range along coastal
marshes

I There are lots of different species, and they all like slightly
different parts of the tidal range

I If you take a sediment core on the marsh you can count lots
of fossilised forams (which can also be dated) and produce a
history of sea level height at that site

I We also take a number of surface samples from the local
region to build up a calibration data set of which forams like
which aspect of the tidal range
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The forward model

Figure 4: The response of foraminifera species to elevation estimated from the modern training
set using the Bayesian transfer function. The blue circles represent the probabilites of species
occurance as determined from the raw count data (empirical probabilities). The response
probabilites of occurance estimated by the Bayesian transfer function model are shown in red with
a mean (heavy line), a credible interval for the mean (light line), and a prediction interval (dashed
line). The green vertical lines represent the species optimum determined from the weighted
average transfer function.

5.1.2 Cross validation of the modern data

Performance of the new B-TF and existing WA-TF was judged using 10-fold cross validation
(Figure 5).The uncertainty bounds (±2s) for elevations predicted by the B-TF contained the true
elevation 90% of the time compared to 92% for the WA-TF. The average 2s uncertainties are
larger in the WA-TF (28 SWLI) than in the B-TF (21 SWLI). The pattern of residuals in the WA-TF
displayed a structure in which the elevation of low salt-marsh samples is over predicted
(negative residuals) and the elevation of high salt-marsh samples is under predicted (positive
residuals). For example, the WA-TF showed an average residual of -16.6 between ⇠10 and ⇠70
SWLI and an average residual of 22.5 between ⇠120 and ⇠140 SWLI. This structure is absent in
the B-TF suggesting that this model is better suited to reconstructing values close to the extremes
of the sampled elevational gradient.

15
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Model description

I Our forward model for the forams uses multinomial counts
and P-splines

I We have a second proxy (called δ13C ) that gives further
information on the position in the tidal frame at that depth in
the core

I Our prior on climate dynamics (here height of sea level over
time) uses a fancy Gaussian process
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Rate of sea level rise (mm/yr) for New Jersey, USA

Figure 6: The EIV-IGP model results for reconstructions produced using the B-TF, the WA-TF
and the multi- proxy Bayesian transfer function. The upper panel shows individual data points
(represented by rectangular boxes that illustrate the 95% confidence region) and include age and
relative sea-level uncertainties. The middle panels show the posterior fit of the errors-in-variables
integrated Gaussian process model to the relative sea-level reconstructions. Solid line represents
the mean fit with the 68% and 95% credible intervals (C.I.) denoted by shading. The lower
panels are the rates of relative sea-level (RSL) change. Shading denotes 68% and 95% credible
intervals (C.I.) for the posterior mean of the rate process. The average rate for each phase of the
reconstruction is given (in mm/yr) with a 95% credible interval.

However, there are some differences among the three reconstructions. For example, the B-TF
shows the highest modern rate of rise at 4.1 mm/yr (95% C.I. 3.27-4.92 mm/yr) in 2000 CE
compared to 3.16 mm/yr (95% C.I. 2.68-3.65 mm/yr) and 3.11 mm/yr (95% C.I. 2.45-3.77
mm/yr) for the multi-proxy B-TF and the WA-TF respectively. The B-TF consistently estimated
RSL lower than the multi-proxy B-TF and the WA-TF between ⇠1400 to ⇠1700, resulting in the
observed difference in the rates into the 21st century. When compared to the observed tide-gauge
data for the last ⇠100 years from New Jersey (Figure 7), the quality of the estimated RSL
mid-point reconstructions can be assessed using mean squared error (MSE). For the multi-proxy
B-TF the MSE was estimated at 0.003 m2 compared to 0.014 m2 for the B-TF and the WA-TF,
indicating that the multi-proxy B-TF mid-points provide better estimates for RSL in comparison
to the B-TF and the WA-TF.

18
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Example 2: multivariate climate in Italy

Monticchio proportion of moisture available to plants

Age (k cal years BP)

A
E

T
/P

E
T

130 120 110 100 90 80 70 60 50 40 30 20 10 0

0.0

0.2

0.4

0.6

0.8

1.0
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Other examples:

I Parnell, A. C., Sweeney, J., Doan, T. K., Salter-Townshend,
M., Allen, J. R. M., Huntley, B., & Haslett, J. (2015).
Bayesian inference for palaeoclimate with time uncertainty
and stochastic volatility. Journal of the Royal Statistical
Society: Series C (Applied Statistics), 64(1), 115–138.

I Tolwinski-Ward, S. E., Tingley, M. P., Evans, M. N., Hughes,
M. K., & Nychka, D. W. (2014). Probabilistic reconstructions
of local temperature and soil moisture from tree-ring data
with potentially time-varying climatic response. Climate
Dynamics, 44(3-4), 791–806.

I Holmström, L., Ilvonen, L., Seppä, H., & Veski, S. (2015). A
Bayesian spatiotemporal model for reconstructing climate
from multiple pollen records. The Annals of Applied
Statistics, 9(3), 1194–1225.
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The grand challenge

Fit a Bayesian model to:

I Reconstruct spatio-temporal palaeoclimate ...

I ... using physical/statistical forward models for many proxies

I ... and physical/statistical models for climate dynamics

The resulting output should be a large sample of spatio-temporal
climate histories

Statistical palaeoclimate reconstruction Andrew Parnell 17/21



The grand challenge

Fit a Bayesian model to:

I Reconstruct spatio-temporal palaeoclimate ...

I ... using physical/statistical forward models for many proxies

I ... and physical/statistical models for climate dynamics

The resulting output should be a large sample of spatio-temporal
climate histories

Statistical palaeoclimate reconstruction Andrew Parnell 17/21



The grand challenge

Fit a Bayesian model to:

I Reconstruct spatio-temporal palaeoclimate ...

I ... using physical/statistical forward models for many proxies

I ... and physical/statistical models for climate dynamics

The resulting output should be a large sample of spatio-temporal
climate histories

Statistical palaeoclimate reconstruction Andrew Parnell 17/21



The grand challenge

Fit a Bayesian model to:

I Reconstruct spatio-temporal palaeoclimate ...

I ... using physical/statistical forward models for many proxies

I ... and physical/statistical models for climate dynamics

The resulting output should be a large sample of spatio-temporal
climate histories

Statistical palaeoclimate reconstruction Andrew Parnell 17/21



Challenges 1: fitting state space models to large and
complex data sets

What we really have is am externally calibrated state-space
model in continuous time:

ycal(t) = f (ccal(t)) + εcal

y(t) = f (c(t)) + ε

c(t) = c(t −∆) + γ

I Fitting these models is hard when all the quantities are
multivariate and f is a complex function

I Pseudo-marginal particle approaches seem to be the way to go
for single-site models

I No obvious method yet for multi-site models. Perhaps
SPDE-INLA?
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Challenges 2: Incorporating mechanistic models

A more complex version (ignoring external calibration):

y(t) = f (c(t))

c(t) = g(c(t−)

I The problem gets trickier if f and g above are deterministic
models

I Some quite complex deterministic models have been
suggested for pollen/climate. Not many for other proxies

I Quite a few simple climate models that might work over the
palaeoclimate period, e.g. SM91:

For Review Only

Bayesian model selection for the glacial-interglacial cycle 7

gorithm to compute these quantities with sufficient accuracy for the late Pleistocene is provided in

Berger (1978). More accurate, time indexed data are provided by Laskar et al. (2004) but the gain

in accuracy is not critical in this context.

The geometry of ice sheets and snow line suggest that a positive insolation anomaly may lead

to a greater ice volume change, than a negative one (Ruddiman, 2006). To account for this, some

authors truncate the astronomical forcing to down-weight negative anomalies. Here, we introduce

the truncation operator

f(x) =

⎧
⎨
⎩

x +
√

4a2 + x2 − 2a if x ≤ 0

x otherwise,

which is used in model PP12 defined below (Paillard, 1998; Parrenin and Paillard, 2012).

2.3. Phenomenological models of climate dynamics

We consider three models of the climate dynamics. They were each originally proposed as low-

order ordinary differential equations, with state vector XXX(t) =
(
X(1)(t), ..., X(d)(t)

)⊤
, where d is the

dimension of the model, with the first component X(1) representing global ice volume. The other

components represent quantities such as glaciation state, or CO2 concentration. In order to account

for model errors, we convert the models into stochastic differential equations by the addition of a

Brownian motion WWW (t). These models were chosen as each models the glacial–interglacial cycle using

a qualitatively different dynamical mechanism, as explained further below. For notational convenience

we drop the explicit dependence of XXX and WWW on t.

Model SM91: (Saltzman and Maasch, 1991)

SM91 models glacial–interglacial cycles as a system of three SDEs,

dX(1) = −
(
X(1) + X(2) + vX(3) + F (γP , γC , γE)

)
dt + σ1dW(1)

dX(2) =
(
rX(2) − pX(3) − sX2

(2) − X3
(2)

)
dt + σ2dW(2)

dX(3) = −q
(
X(1) + X(3)

)
dt + σ3dW(3)

in which variables X(2) and X(3) represent CO2 concentration in the atmosphere and deep-sea ocean

temperature, respectively. The model exhibits limit-cycle dynamics, oscillating with a periodicity

of around 100 kyr, although this is also controlled by the astronomical forcing. The model is an

expression of the hypothesis that carbon-cycle effects are critical for the emergence of glacial cycles.

Hence the non-linear terms, which are responsible for the oscillation, are present in the second equation

only. SM91 is non-dimensional with a reference value of 10 kyr for t.
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Back to the start: can we do better than this?
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Summary

I A Bayesian version model with good forward models which
produces climate histories seems like the best way to go for
this work

I We need help with Bayesian computation for large
multivariate non-linear non-Gaussian state space models

I We need help with combining deterministic/stochastic
elements in forward models and climate models

I We can do better than the Hockey Stick!
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