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The GISP 2 ice core
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The Hockey Stick
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A bundle of Hockey Sticks
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A Lago Grando di Monticchio

(By Pitichinaccio - Own work, Public Domain)
5/30



Cape May, New Jersey

(By Smallbones - Own work, CC0)
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Different proxies

(a) Tree rings

() Anon-biting midge (chironomid)

(b) Anice core

(d) Alder pollen
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Pollen depth plots
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— T T T — T T T T
2 4 6 810 0 5 10 15 20 0 5 10 15
Percentage

8/30



From pictures to data

Year Climate Proxy data

2016 climatesgig Proxys so16  ProXys o016 Proxy,, 2016
2015 climatesgys Proxys 2015  ProXys 2015 Proxy,, »01s
1850 climateigsg Proxys 1850 ProXYs 1gs50 Proxy, 1850
1849 climateigsg | proxy; 1849  Proxys 1gag Proxy,, 1849
1001 climateqgo; Proxyi 1001 ProXys 1001 Proxy,, 1001
1000 climatejgoo | Proxy; 1000 ProXys 1000 Proxyp 1000
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A more general version

Calibration data set:

ID Climate Proxy data
1 climate; | proxy; 4 proxy; ; proxy,, 1
2 climatey | proxy; , proxy; o Proxy, »
k climatey | proxy; , Proxys 4 Proxy,,
Fossil data set:
Year | Climate Proxy data
n-1 climate, 1 | proxy; ,_1 Proxys , 1 Proxy, n_1
m+1 | climate, 1 | proxy,, Proxy m.1 Proxyp mi1
m climate,, Proxy; m Proxys m, Proxyp. m
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Some notation

Let:

> vy be the ancient proxy data. Time indexed and usually
multivariate

> ¢ be ancient ‘climate’. Time indexed and occasionally
multivariate. Sometimes spatial too

> yCal be the proxy data for the calibration period
» €l be the climate data for the calibration period

Aim is to find c|y, y@l ccal
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The regression version

Write:
Ccal _ f(ycal) +e

f might be a linear regression or involve some dimension reduction
or variable selection.
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The regression version

Write:
Ccal _ f(ycal) +e

f might be a linear regression or involve some dimension reduction
or variable selection.

Then create:
¢=1f(y)

Problem solved!
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Problems with this approach
Statistical:

>

Hard to do model checking on f due to the size and nature of
the calibration data

c is often multivariate so people often pick one dimension
The calibration period may be autocorrelated, leading to many
spurious relationships

Dimension reduction approaches will be very sensitive to the
number of components chosen

Lots of missing proxy data
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Problems with this approach
Statistical:

» Hard to do model checking on f due to the size and nature of
the calibration data

> c is often multivariate so people often pick one dimension

» The calibration period may be autocorrelated, leading to many
spurious relationships

» Dimension reduction approaches will be very sensitive to the
number of components chosen

> Lots of missing proxy data

Biological:

» The causation is the wrong way round. Changes in climate
cause changes in proxy values

» The uncertainty in the proxies is usually substantial and not
included

» The proxies might not be sensitive to northern hemisphere
annual temperature, or any other chosen aspect of climate
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A better way?

Instead write:
ycal _ f(ccal) +e

f is known here as a forward model since it works in the causal
direction. We can now include physical knowledge of how climate
affects the proxies
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A better way?

Instead write:
ycal _ f(ccal) +e

f is known here as a forward model since it works in the causal
direction. We can now include physical knowledge of how climate
affects the proxies

Now use Bayes:

p(cly, y@, c@l) o p(y<@!1c@)p(yc)p(c)

We have the extra advantage that we can include a prior
distribution p(c) on the climate process
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Bayesian palaeoclimate reconstruction in more detail

p(c, 6,0y, ¥, ¢ o p(yc@ 0)p(y|c, )p(cl@)p(8, 8)

» p(0, ) is a prior on the parameters that control the
proxy/climate relationship, and climate dynamics respectively

» p(cl|¢) is a prior distribution on climate dynamics. This might
be a simple statistical time series model (e.g. a random walk)
all the way up to a full general circulation model

» p(y|c,0) is the forward model again, but this time applied to
the missing ancient climates

> p(ycal\ccal, 0) is the forward model applied to the calibration
data.
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Why is this not the standard way people do this?

1. Building forward models is hard because you need a good
calibration data set, some statistical modelling knowledge
(especially with multivariate data), and some knowledge of the
pollen/climate relationship

2. People want to avoid testing their models (out of sample
evaluation etc)

3. Finding a good prior for climate dynamics is hard, especially if
you have timing uncertainty

4. Bayes is still not common in climate science

5. Fitting this model to large calibration data sets is hard

16 /30



Example: sea level rise in East Coast USA

» Foramnifera (or forams) live in the tidal range along coastal
marshes

» There are lots of different species, and they all like slightly
different parts of the tidal range

> If you take a sediment core on the marsh you can count lots of
fossilised forams (which can also be dated) and produce a
history of sea level height at that site

» We also take a number of surface samples from the local region
to build up a calibration data set of the forams’ preference for
different aspects of the tidal range
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The forward model

Probability of occurrence
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Model description

» Our forward model for the forams uses multinomial counts and
P-splines

» We have a second proxy (called §*3C) that gives further
information on the position in the tidal frame at that depth in
the core

» Our prior on climate dynamics (here height of sea level over
time) uses a fancy Gaussian process
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Rate of sea level rise (mm/yr) for New Jersey, USA
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Example 2: multivariate climate in ltaly
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Pollen forward models

» The forward model here is much more complicated, as we have
~10,000 modern pollen samples, with 3 dimensional climate
and 28 compositional counts of pollen:

[y17 o 7_y28] ~ MU/t(N, {P17 .. ~7P28})

where, e.g.
exp(¢;(c))

= S exp(8,(0))



Pollen forward models

» The forward model here is much more complicated, as we have
~10,000 modern pollen samples, with 3 dimensional climate
and 28 compositional counts of pollen:

[y17 o 7_y28] ~ MU/t(N, {P17 .. ~7P28})

where, e.g.
),
> exp(65(c))
- To fit such a model we make a small approximation and break the

model into two, and fit the calibration parameters 6 separately from
the climate process parameters ¢

» This places some mild restrictions on the climate process to
still obtain valid inference



Example 2: Histories

Monticchio proportion of moisture available to plants
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Example 2: First differences - the speed of climate change

Monticchio: millennial (sliding window) first difference mean +/- 1 standard deviation
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The grand challenge!

Fit a Bayesian model to:

- Reconstruct spatio-temporal palaeoclimate ...
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The grand challenge!

Fit a Bayesian model to:

- Reconstruct spatio-temporal palaeoclimate ...
- ... using physical/statistical forward models for many proxies
- ... and physical/statistical models for climate dynamics

The resulting output should be a large sample of spatio-temporal
climate histories
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Challenges 1: fitting state space models to large and
complex data sets

What we really have is an externally calibrated state-space model
in continuous time:

ycal(t) — fg(ccal(t))+6ca|
y(t) = fo(c(t)) +e
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Challenges 1: fitting state space models to large and
complex data sets

What we really have is an externally calibrated state-space model
in continuous time:

ycal(t) — fe(ccal(t)) +6ca|
y(t) = fylc(t)) +e
c(t) = cp(t—A)+~

> Fitting these models is hard when all the quantities are
multivariate and f is a complex function

» Pseudo-marginal particle approaches seem to be the way to go
for single-site models

> No obvious method yet for multi-site models. Perhaps
SPDE-INLA?
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Challenges 2: Incorporating mechanistic models

A more complex version (ignoring external calibration):

y(t) = fo(c(t))
c(t) = ge(c(to)
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Challenges 2: Incorporating mechanistic models

A more complex version (ignoring external calibration):

ye) = fale(t))
ct) = golc(t)

» The problem gets trickier if f and g above are deterministic
models

» Some quite complex deterministic models have been suggested
for pollen/climate. Not many for other proxies

» Quite a few simple climate models that might work over the
palaeoclimate period, e.g. Saltzman and Maasch, 1991:

dXq = - (X(l) + X +vX(3) + F(vp, e, 'YE)) dt + 0’1dW(1)
dX@) = (TX(Z) —pX(g) — X% — X(32)> dt + 02dW (s
dX@ = —a(Xa)+ X)) dt +o3dWy
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Back to the future: can we do better than this?

NORTHERN HEMISPHERE

Departures in temperature (°C)
from the 1961 to 1990 average

-1.0 -
L Data from thermometers (red) and from tree rings, |
B corals, ice cores and historical records (blue). i
1 1 1 L 1
1000 1200 1400 1600 1800 2000
Year

28/30



Summary

v

A Bayesian model with an improved forward model and richer
climate process for multiple sites and proxies is the ultimate
research goal

We need help with Bayesian computation for large multivariate
non-linear non-Gaussian state space models

We need help with combining deterministic/stochastic elements
in forward models and climate models

We must do better than the Hockey Stick!
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