
Class 3: Linear Regression and GLMs

Andrew Parnell
andrew.parnell@mu.ie

https://andrewcparnell.github.io/TSDA/

PRESS RECORD

1 / 29

https://andrewcparnell.github.io/TSDA/

Learning outcomes

▶ Know how to fit and interpret a linear regression
▶ Know the difference between a linear regression model and a generalised linear

model (GLM)
▶ Know what a link function is and why it is used
▶ Be able to interpret the output of a simple GLM

2 / 29

Using more of the data

▶ It’s very rare that we are given a data set with just a single variable
▶ More often we’re given multiple variables and asked to predict one or more of the

variables from the others
▶ This is an example of conditional inference
▶ It might look more complicated, but this is still just fitting a probability distribution

to some data

3 / 29

Linear regression example
Here is some data on sea level rise:
sl = read.csv('../../data/tide_gauge.csv')
with(sl, plot(year_AD, sea_level_m))

1880 1900 1920 1940 1960 1980 2000

−
0.

15
−

0.
10

−
0.

05
0.

00
0.

05

year_AD

se
a_

le
ve

l_
m

4 / 29

Linear regression models

▶ The simplest version of a linear regression model has:
▶ A response variable (y) which is what we are trying to predict/understand
▶ An explanatory variable or covariate (x) which is what we are trying to predict the

response variable from
▶ Some residual uncertainty (ϵ) which is the leftover uncertainty that is not accounted

for by the explanatory variable

▶ Our goal is to predict the response variable from the explanatory variable, or to try
and discover if the explanatory variable causes some kind of change in the response

5 / 29

The linear models in maths

▶ We write the linear model as:

yi = α + βxi + ϵi

where α is the intercept, β the slope, and i = 1, . . . , N represents each of the N
observations

▶ Usually we make the additional assumption that ϵi ∼ N(0, σ2) where σ is the
residual standard deviation

▶ Writing this in probability distributions:

yi |xi , α, β, σ ∼ N(α + βxi , σ2)

.

6 / 29

Fiting linear regression models

▶ We can create a likelihood as before by guessing some values of the parameters and
then using the dnorm function to compute the likelihood value

alpha = 2
beta = 1.5
sigma = 0.6
y = sl$sea_level_m
x = sl$year_AD
sum(dnorm(y, mean = alpha + beta*x, sd = sigma, log = TRUE))

[1] -1539607458

▶ Not a very high value of the likelihood!

7 / 29

Finding the best values
▶ Luckily, R has the lm function to find the best fitting values of the parameters

summary(lm(y ~ x))

##
Call:
lm(formula = y ~ x)
##
Residuals:
Min 1Q Median
-0.0167787 -0.0051874 -0.0003646
3Q Max
0.0063022 0.0252621
##
Coefficients:
Estimate Std. Error
(Intercept) -3.062e+00 3.937e-02
x 1.538e-03 2.024e-05
t value Pr(>|t|)
(Intercept) -77.78 <2e-16 ***
x 75.99 <2e-16 ***

Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05
'.' 0.1 ' ' 1
##
Residual standard error: 0.008659 on 128 degrees of freedom
Multiple R-squared: 0.9783, Adjusted R-squared: 0.9781
F-statistic: 5775 on 1 and 128 DF, p-value: < 2.2e-16

8 / 29

Checking the likelihood

alpha = coefficients(lm(y ~ x))[1]
beta = coefficients(lm(y ~ x))[2]
sigma = summary(lm(y ~ x))$sigma
sum(dnorm(y, mean = alpha + beta*x, sd = sigma,

log = TRUE))

[1] 433.9335

A much higher value of the likelihood!

9 / 29

Other notes about lm

▶ Usually we would store the output from lm in another object to allow us to
manipulate the output, e.g. my_model = lm(y ~ x)

▶ We can use the confint function to get confidence intervals on the parameters
▶ We can predict future values of sea level from the model by giving it new x values,

e.g.
my_model = lm(y ~ x)
predict(my_model, newdata = data.frame(x = 2050))

1
0.09055375

10 / 29

Checking the model

▶ Just finding the best values of the parameters and their uncertainty is not the whole
story

▶ We need to check the fit of the model
▶ We can do this by analysing whether the assumed probability distribution is correct

or not
▶ Can look at the probability distribution we have fitted to the data, but most people

just look at the leftover bits - the residuals

11 / 29

Residual plot
▶ Common to creata QQ-plot of the residuals, and a scatter plot of the residuals vs

the fits
par(mfrow=c(1, 2))
qqnorm(my_model$residuals); qqline(my_model$residuals)
plot(my_model$fitted.values, my_model$residuals)

−2 −1 0 1 2

−
0.

01
0.

01
0.

02

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

−0.15 −0.10 −0.05 0.00

−
0.

01
0.

01
0.

02
my_model$fitted.values

m
y_

m
od

el
$r

es
id

ua
ls

12 / 29

Transforming the data

▶ Sometimes the residuals of a linear regression look a little bit mis-shapen
▶ We might improve the fit by adding more covariates, or by transforming the data

(the response and/or the covariates)
▶ If your variables have very large values then you might get better results by

standardising your data (subtracting the mean and dividing by the standard
deviation)

▶ Common transformations include the log or square root
▶ A common transformation in time series data is the Box-Cox transformation. . .

13 / 29

Box-Cox

▶ The Box-Cox transformation is:

f (x ; λ) = xλ − 1
λ

if λ ̸= 0

or
f (x ; λ) = log(x) if λ = 0

▶ The usual reason to use it is when the data are skewed and we want it to look more
symmetrical

▶ You need to choose the value of λ; usually trial and error

14 / 29

From LMs to GLMs
▶ If a normal distribution is not suitable for the residuals we need to choose another

probability distribution
▶ Here is some data from an experiment on whitefly:

whitefly = read.csv('../../data/whitefly.csv')
head(whitefly, 4)

imm week block trt n live plantid
1 0 5 3 5 6 6 3
2 0 1 2 3 10 2 4
3 0 3 2 3 10 0 4
4 0 4 2 3 10 6 4

▶ The live and n columns indicate how many whitefly survived and were used in the
experiment respectively

▶ We have a fixed total and a number of surviving whitefly out of this total. Which
probability distribution might be appropriate?

15 / 29

Plotting the whitefly data

barplot(table(whitefly$live))

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0
50

15
0

25
0

- Doesn’t really show the whole story as we’re ignoring the total

16 / 29

Second go
hist(whitefly$live/whitefly$n, breaks = 30)

Histogram of whitefly$live/whitefly$n

whitefly$live/whitefly$n

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
50

15
0

25
0

35
0

- Better, but actually there is also a covariate in the number of immature whitefly that
were included (variable imm)

17 / 29

Third go
plot(whitefly$imm, whitefly$live/whitefly$n)

0 20 40 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

whitefly$imm

w
hi

te
fly

$l
iv

e/
w

hi
te

fly
$n

- Looks like the more immature whitefly there were, the more likely they were to survive
18 / 29

Fitting a model

▶ Let’s call y the number of live whitefly at the end of the experiment, and n the
number of whitefly used in the experiment

▶ Let’s fit a binomial distribution:

y ∼ Bin(n, p)

▶ We know the value of n so it is not really a parameter but a fixed part of the data
▶ We need to estimate p
▶ We could use method of moments or maximum likelihood. If we use method of

moments we get p̂ = 0.245

19 / 29

Fitting a better model

▶ What if we wanted to include imm as a covariate?
▶ One way would be to let p = α + βx where x is the number of immature whitefly
▶ We could fit this using maximum likelihood to get estimates of α̂ and β̂
▶ This is now a Generalised Linear Model (GLM)
▶ The likelihood would be:

y = whitefly$live
n = whitefly$n
x = whitefly$imm
alpha = 0.5
beta = 0.0001
sum(dbinom(y, n, alpha + beta * x, log = TRUE))

[1] -3330.495

20 / 29

Fitting an even better model

▶ Suppose after using maximum likelihood we got α̂ = 0.2 and β̂ = 0.01. Then the
likelihood would be

alpha = 0.2
beta = 0.01
sum(dbinom(y, n, alpha + beta * x, log = TRUE))

[1] -1971.889

▶ Can anyone see any problems with this model? (Hint: suppose I wanted to predict
what proportion would die when x = 100)

21 / 29

Plotting the fitted model
plot(x, y/n)
lines(x, alpha + beta * x, col = 'red')

0 20 40 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y/
n

22 / 29

The logit function
▶ To stop the lines going out of the range (0, 1) people often use the logit transformation:

log
[

p
1 − p

]
= α + βx or p = eα+βx

eα+βx + 1

▶ The latter is known as the inverse logit function
▶ We now maximise the likelihood:

p = exp(alpha + beta * x) / (exp(alpha + beta * x) + 1)
sum(dbinom(y, n, p, log = TRUE))

[1] -3630.322

▶ These logit and inverse logit functions are in the boot package:

library(boot)
sum(dbinom(y, n, inv.logit(alpha + beta * x), log = TRUE))

[1] -3630.322
23 / 29

Plotting the fit
▶ Suppose under this method we got maximum likelihood estimates of α̂ = −2 and

β̂ = 0.05
▶ A plot of the fitted values is now:

alpha = -2
beta = 0.05
plot(x, y/n)
lines(x, inv.logit(alpha + beta * x), col = 'red')

0 20 40 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y/
n

24 / 29

Finding the maximum likelihood values

▶ R has a function called glm to find the maximum likelihood values for us
▶ For binomial model with a logit link function we would type:

glm(cbind(y, n) ~ x, family = binomial(link = logit))

##
Call: glm(formula = cbind(y, n) ~ x, family = binomial(link = logit))
##
Coefficients:
(Intercept) x
-1.95517 0.05391
##
Degrees of Freedom: 639 Total (i.e. Null); 638 Residual
Null Deviance: 2389
Residual Deviance: 1688 AIC: 2541

25 / 29

Further details about the fit

▶ The interpretation of the β̂ value (the coefficient of x) is in terms of log odds. A
unit increase in x gives a exp(β̂) ≈ 1.06 times increase in the probability of a
whitefly surviving

▶ You’ll see amongst the output something called the deviance. This is minus twice
the log-likelihood

▶ It’s a common measure used to compare models as the deviance for a linear
regression model is just the mean square error

▶ Next to it you’ll see the Akaike Information Criterion or AIC value, which penalises
the deviance by adding on twice the number of parameters (i.e. a measure of the
complexity of the model)

▶ Often, you would fit multiple models with different covariates and choose the one(s)
with the smallest AIC

26 / 29

Other glms
▶ Another common glm is the Poisson, useful for count data
▶ For example, suppose we treated the number of whitefly who survived as a count,

and temporarily ignored the n values
▶ We could fit:

glm(y ~ x, family = poisson(link = log))

##
Call: glm(formula = y ~ x, family = poisson(link = log))
##
Coefficients:
(Intercept) x
0.38559 0.04608
##
Degrees of Freedom: 639 Total (i.e. Null); 638 Residual
Null Deviance: 3055
Residual Deviance: 2154 AIC: 3124

▶ Recall that the parameter in the Poisson probability distribution represents the
mean (and the variance) which must be positive.

▶ Like the logit, the log link stops the rate parameter from going negative

27 / 29

A final word on glms

▶ There are lots of different types of GLMs We can do Gamma, Negative Binomial,
Beta, Inverse Gaussian, . . .

▶ Each has a link function which transforms the main parameter into an unrestricted
range through which we can include covariates

▶ It’s also simple to include extra covariates or interactions:
glm(y ~ x1 + x2 + x1:x2, family = poisson(link = log))

▶ Residual checks are still important, and R will create them for us
▶ We can get at them via e.g.

my_model = glm(cbind(y, n) ~ x, family = binomial(link = logit))
plot(my_model)

28 / 29

Summary

▶ Linear Regression and Generalised Linear Models are two common ways to extend
standard probability distributions to include covariates

▶ We estimate the parameters via maximum likelihood using e.g. lm or glm
▶ We sometimes need to include a link function which transforms the parameters into

an unrestricted range
▶ There are lots of different types of GLM for every flavour of probability distribution

29 / 29

