Class 3: Linear Regression and GLMs

Andrew Parnell andrew.parnell@mu.ie

https://andrewcparnell.github.io/TSDA/

PRESS RECORD

Learning outcomes

- Know how to fit and interpret a linear regression
- Know the difference between a linear regression model and a generalised linear model (GLM)
- Know what a link function is and why it is used
- Be able to interpret the output of a simple GLM

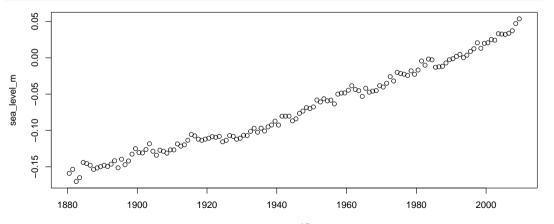
Using more of the data

- It's very rare that we are given a data set with just a single variable
- More often we're given multiple variables and asked to predict one or more of the variables from the others
- This is an example of conditional inference
- It might look more complicated, but this is still just fitting a probability distribution to some data

Linear regression example

Here is some data on sea level rise:

```
sl = read.csv('../../data/tide_gauge.csv')
with(sl, plot(year_AD, sea_level_m))
```



year_AD

Linear regression models

► The simplest version of a linear regression model has:

- A response variable (y) which is what we are trying to predict/understand
- An explanatory variable or covariate (x) which is what we are trying to predict the response variable from
- Some residual uncertainty (e) which is the leftover uncertainty that is not accounted for by the explanatory variable
- Our goal is to predict the response variable from the explanatory variable, or to try and discover if the explanatory variable causes some kind of change in the response

The linear models in maths

We write the linear model as:

$$y_i = \alpha + \beta x_i + \epsilon_i$$

where α is the intercept, β the slope, and i = 1, ..., N represents each of the N observations

- ▶ Usually we make the additional assumption that $\epsilon_i \sim N(0, \sigma^2)$ where σ is the residual standard deviation
- Writing this in probability distributions:

$$y_i | x_i, \alpha, \beta, \sigma \sim N(\alpha + \beta x_i, \sigma^2)$$

Fiting linear regression models

We can create a likelihood as before by guessing some values of the parameters and then using the dnorm function to compute the likelihood value

```
alpha = 2
beta = 1.5
sigma = 0.6
y = sl$sea_level_m
x = sl$year_AD
sum(dnorm(y, mean = alpha + beta*x, sd = sigma, log = TRUE))
```

[1] -1539607458

```
Not a very high value of the likelihood!
```

Finding the best values

Luckily, R has the lm function to find the best fitting values of the parameters

summary(lm(y ~ x))

Call: ## lm(formula = y ~ x)## ## Residuals: Min 10 Median ## ## -0.0167787 -0.0051874 -0.0003646 30 Max ## 0.0063022 0.0252621 ## ## ## Coefficients: ## Estimate Std. Error ## (Intercept) -3.062e+00 3.937e-02 ## x 1.538e-03 2.024e-05 t value Pr(>|t|) ## ## (Intercept) -77.78 <2e-16 *** 75.99 <2e-16 *** ## x ## ---## Signif. codes: ## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## ## Residual standard error: 0.008659 on 128 degrees of freedom ## Multiple R-squared: 0.9783, Adjusted R-squared: 0.9781 ## F-statistic: 5775 on 1 and 128 DF. p-value: < 2.2e-16

Checking the likelihood

[1] 433.9335

A much higher value of the likelihood!

Other notes about lm

- Usually we would store the output from lm in another object to allow us to manipulate the output, e.g. my_model = lm(y ~ x)
- We can use the confint function to get confidence intervals on the parameters
- We can predict future values of sea level from the model by giving it new x values, e.g.

```
my_model = lm(y ~ x)
predict(my_model, newdata = data.frame(x = 2050))
```

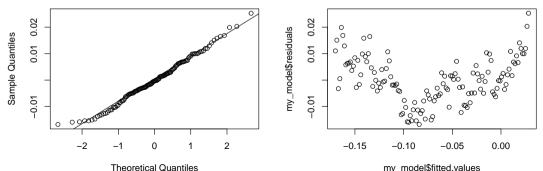
1 ## 0.09055375

- Just finding the best values of the parameters and their uncertainty is not the whole story
- We need to check the fit of the model
- We can do this by analysing whether the assumed probability distribution is correct or not
- Can look at the probability distribution we have fitted to the data, but most people just look at the leftover bits - the residuals

Residual plot

Common to creata QQ-plot of the residuals, and a scatter plot of the residuals vs the fits

```
par(mfrow=c(1, 2))
qqnorm(my_model$residuals); qqline(my_model$residuals)
plot(my_model$fitted.values, my_model$residuals)
```

Transforming the data

- Sometimes the residuals of a linear regression look a little bit mis-shapen
- We might improve the fit by adding more covariates, or by transforming the data (the response and/or the covariates)
- If your variables have very large values then you might get better results by standardising your data (subtracting the mean and dividing by the standard deviation)
- Common transformations include the log or square root
- A common transformation in time series data is the Box-Cox transformation...

Box-Cox

► The Box-Cox transformation is:

$$f(x;\lambda)=rac{x^{\lambda}-1}{\lambda} ext{ if } \lambda
eq 0$$

or

$$f(x; \lambda) = \log(x)$$
 if $\lambda = 0$

- The usual reason to use it is when the data are skewed and we want it to look more symmetrical
- > You need to choose the value of λ ; usually trial and error

From LMs to GLMs

- If a normal distribution is not suitable for the residuals we need to choose another probability distribution
- ▶ Here is some data from an experiment on whitefly:

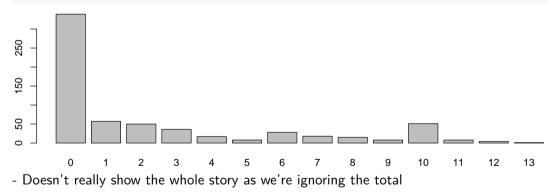
```
whitefly = read.csv('../../data/whitefly.csv')
head(whitefly, 4)
```

##		imm	week	block	trt	n	live	plantid
##	1	0	5	3	5	6	6	3
##	2	0	1	2	3	10	2	4
##	3	0	3	2	3	10	0	4
##	4	0	4	2	3	10	6	4

- The live and n columns indicate how many whitefly survived and were used in the experiment respectively
- We have a fixed total and a number of surviving whitefly out of this total. Which probability distribution might be appropriate?

Plotting the whitefly data

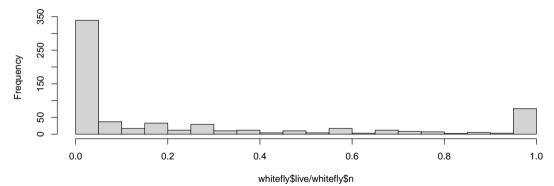
barplot(table(whitefly\$live))



Second go

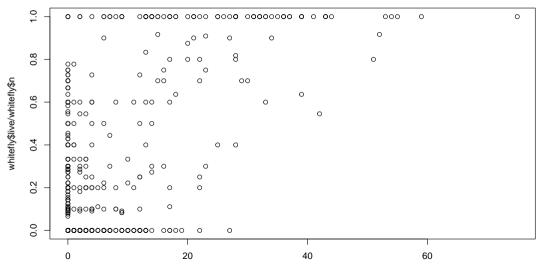
hist(whitefly\$live/whitefly\$n, breaks = 30)

Histogram of whitefly\$live/whitefly\$n



- Better, but actually there is also a covariate in the number of immature whitefly that were included (variable imm)

Third go plot(whitefly\$imm, whitefly\$live/whitefly\$n)



Fitting a model

- Let's call y the number of live whitefly at the end of the experiment, and n the number of whitefly used in the experiment
- Let's fit a binomial distribution:

 $y \sim Bin(n, p)$

- \blacktriangleright We know the value of *n* so it is not really a parameter but a fixed part of the data
- We need to estimate p
- We could use method of moments or maximum likelihood. If we use method of moments we get $\hat{p} = 0.245$

Fitting a better model

- What if we wanted to include imm as a covariate?
- One way would be to let $p = \alpha + \beta x$ where x is the number of immature whitefly
- \blacktriangleright We could fit this using maximum likelihood to get estimates of \hat{lpha} and \hat{eta}
- This is now a Generalised Linear Model (GLM)
- The likelihood would be:

```
y = whitefly$live
n = whitefly$n
x = whitefly$imm
alpha = 0.5
beta = 0.0001
sum(dbinom(y, n, alpha + beta * x, log = TRUE))
```

[1] -3330.495

Fitting an even better model

▶ Suppose after using maximum likelihood we got $\hat{\alpha} = 0.2$ and $\hat{\beta} = 0.01$. Then the likelihood would be

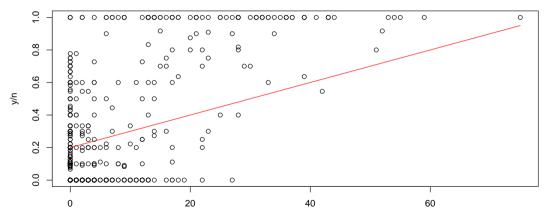
```
alpha = 0.2
beta = 0.01
sum(dbinom(y, n, alpha + beta * x, log = TRUE))
```

```
## [1] -1971.889
```

Can anyone see any problems with this model? (Hint: suppose I wanted to predict what proportion would die when x = 100)

Plotting the fitted model

plot(x, y/n)
lines(x, alpha + beta * x, col = 'red')



The logit function

\triangleright To stop the lines going out of the range (0, 1) people often use the *logit* transformation:

$$\log\left[\frac{p}{1-p}\right] = \alpha + \beta x \text{ or } p = \frac{e^{\alpha + \beta x}}{e^{\alpha + \beta x} + 1}$$

The latter is known as the inverse logit function

We now maximise the likelihood:

```
p = \exp(alpha + beta * x) / (exp(alpha + beta * x) + 1)
sum(dbinom(y, n, p, log = TRUE))
```

[1] -3630.322

These logit and inverse logit functions are in the boot package:

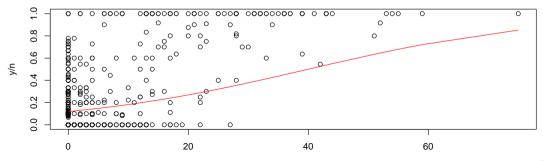
```
library(boot)
sum(dbinom(y, n, inv.logit(alpha + beta * x), log = TRUE))
```

[1] -3630.322

Plotting the fit

- ▶ Suppose under this method we got maximum likelihood estimates of $\hat{\alpha} = -2$ and $\hat{\beta} = 0.05$
- ► A plot of the fitted values is now:

```
alpha = -2
beta = 0.05
plot(x, y/n)
lines(x, inv.logit(alpha + beta * x), col = 'red')
```



Finding the maximum likelihood values

R has a function called glm to find the maximum likelihood values for us
 For binomial model with a logit *link function* we would type:

```
glm(cbind(y, n) ~ x, family = binomial(link = logit))
```

```
##
## Call: glm(formula = cbind(y, n) ~ x, family = binomial(link = logit))
##
## Coefficients:
## (Intercept)
                         х
## -1.95517 0.05391
##
## Degrees of Freedom: 639 Total (i.e. Null); 638 Residual
## Null Deviance:
                       2389
## Residual Deviance: 1688 ATC: 2541
```

Further details about the fit

- The interpretation of the $\hat{\beta}$ value (the coefficient of x) is in terms of *log odds*. A unit increase in x gives a $\exp(\hat{\beta}) \approx 1.06$ times increase in the probability of a whitefly surviving
- You'll see amongst the output something called the *deviance*. This is minus twice the log-likelihood
- It's a common measure used to compare models as the deviance for a linear regression model is just the mean square error
- Next to it you'll see the Akaike Information Criterion or AIC value, which penalises the deviance by adding on twice the number of parameters (i.e. a measure of the complexity of the model)
- Often, you would fit multiple models with different covariates and choose the one(s) with the smallest AIC

Other glms

- Another common glm is the Poisson, useful for count data
- For example, suppose we treated the number of whitefly who survived as a count, and temporarily ignored the n values
- ► We could fit:

```
glm(y ~ x, family = poisson(link = log))
```

```
##
## Call: glm(formula = y ~ x, family = poisson(link = log))
##
## Coefficients:
## (Intercept)
                       x
      0.38559
                   0.04608
##
##
## Degrees of Freedom: 639 Total (i.e. Null); 638 Residual
## Null Deviance:
                       3055
## Residual Deviance: 2154 ATC: 3124
```

A final word on glms

- There are lots of different types of GLMs We can do Gamma, Negative Binomial, Beta, Inverse Gaussian, ...
- Each has a link function which transforms the main parameter into an unrestricted range through which we can include covariates

It's also simple to include extra covariates or interactions:

 $glm(y \sim x1 + x2 + x1:x2, family = poisson(link = log))$

Residual checks are still important, and R will create them for us

We can get at them via e.g.

my_model = glm(cbind(y, n) ~ x, family = binomial(link = logit))
plot(my_model)

Summary

- Linear Regression and Generalised Linear Models are two common ways to extend standard probability distributions to include covariates
- We estimate the parameters via maximum likelihood using e.g. lm or glm
- We sometimes need to include a link function which transforms the parameters into an unrestricted range
- ▶ There are lots of different types of GLM for every flavour of probability distribution