
Class 1: Random walks and auto-regressive models

Andrew Parnell
andrew.parnell@mu.ie

https://andrewcparnell.github.io/TSDA/

PRESS RECORD

1 / 28

https://andrewcparnell.github.io/TSDA/


Learning outcomes

▶ Understand how a random walk process is generated
▶ Know what an Autocorrelation (ACF) and Partial Autocorrelation (PACF) function

is
▶ Understand the AR(p) process
▶ Understand the key parts that make up a stationary time series
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The most important slide in the course

Almost all of time series is based on two ideas:
1. Base your future predictions on previous values of the data
2. Base your future predictions on how wrong you were in your past

predictions
The remainder of the course is focussed on applying these two ideas
in increasingly complex situations
For today we only discuss discrete time series, i.e. where
t = 1, 2, 3, ...
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Recall: decomposing time series

▶ We decompose time series commonly as:

yt = trendt + seasonalityt + errort

▶ . . . but sometimes it is not easy to separate these into different parts

▶ All of the modelling we do today will focus on the error component
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A time series with a big trend?
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Generating the series
set.seed(123)
y <- cumsum(rnorm(1000))
plot(y[1:500], type = 'l')
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▶ This is a random walk series
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And what happens when we continue the series?
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Random walk applications

The steps don’t have to be normally distributed.

▶ Random walks are commonly used for forecasting series like stock markets
▶ If the step size probability distribution is heavy tailed (e.g. t distributed), we have a

Levy Process
▶ They also don’t have to be in 1 dimension. We can simulate random walks in 2, 3,

. . . dimensions by adding multivariate steps
▶ You can fit this model by calculating the likelihood from:

yt ∼ N(yt−1, σ2)
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Levy flight vs Brownian motion in 2D

There is evidence that animals such as sharks follow a levy flight pattern (right) when
foraging for food - they had previously been thought to approximate Brownian motion
(left)
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Diagnosing time series behaviour

▶ A useful way to characterise the behaviour of a time series is the autocorrelation
function

▶ (auto = self, i.e. correlation of the series with itself)
▶ We calculate the correlation of the series with itself shifted by 1 time point
▶ The shifted data set is known as the lagged time series
▶ We repeat the autocorrelation calculation for 1 lag, 2 lags, 3 lags, etc
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Plotting the acf
▶ R has a function acf which will plot this for you

acf(y)

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Series  y

This random walk series has very high autocorrelation and many different lags
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A real acf
▶ With seasonal data, you might see patterns in the ACF

lynx = read.csv('../../data/lynx.csv')
acf(lynx$number)
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Autoregressive models
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Autoregressive (AR) models

▶ Autoregressive models literally perform a linear regression of the time series against
the previous lag of the series

▶ For example, an AR(1) process can be written as:

yt = α + βyt−1 + ϵt

▶ where ϵt ∼ N(0, σ2) just like a linear regression.

▶ In a probability distribution format, we might write:

yt ∼ N(α + βyt−1, σ2)

. . . and maximise the likelihood as normal
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Interpretation of the AR parameters

▶ α is an estimate of the stable mean of the process

▶ β is interesting:
▶ Values close to 1 indicate that the series is almost like a random walk.
▶ Values close to 0 indicate that the series is almost completely composed of random

normally-distributed error terms
▶ Values less than 0 indicate that the series is ‘repulsive’
▶ Values greater than 1 (or less than -1) indicate that the series is chaotic
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Simulating from an AR(1) process

▶ We can simulate from an AR(1) process with:
set.seed(123)
T = 1000
t_seq = 1:T
sigma = 0.4
alpha = 1
beta = 0.6
y = rep(NA,T)
y[1] = rnorm(1,0,sigma)
for(t in 2:T) y[t] = rnorm(1,alpha + beta * y[t-1],

sigma)

▶ It’s fun to play around with values of beta and see what happens to the model
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Some features of an AR(1) process
▶ For an AR(1) process, the ACF decays exponentially if β < 1
▶ We can see this if we look at the acf

acf(y)
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Extending the AR model

▶ An AR(2) process is written as:

yt = α + β1yt−1 + β2yt−2 + ϵt

▶ An AR(p) process can be written as:

yt = α +
p∑

i=1
βiyt−i + ϵt

▶ The restrictions on the values of βi get much more complicated as p increases to
avoid a chaotic series
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The partial autocorrelation function

▶ Another commonly plotted summary statistic from a time series is the partial
autocorrelation function or PACF

▶ The PACF at lag k is created by:
1. Creating an AR(k-1) model
2. Getting the residuals ϵ̂t
3. Calculating the autocorrelation function between the data and the residuals

▶ You can think of it as being the autocorrelation function for lag k having removed
the effect of the lower level lags
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A plot of the PACF
▶ The ACF and PACF for the AR(1) process we generated

par(mfrow=c(1, 2))
acf(y)
pacf(y)
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Some rules about ACF and PACF

▶ In general for an AR(p) process:
▶ There will be exponential decay in the ACF
▶ There will be p sticking out (‘significant’) lags in the PACF

Thus you can have a good initial guess at identifying p in an AR(p) model from the ACF
and PACF
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Simulating from an AR(p) process
set.seed(100)
T = 500
t_seq = 1:T
sigma = alpha = 1
p = 3
beta = sort(runif(p, 0, 0.2), decreasing = TRUE)
y = rep(NA,T)
y[1:p] = rnorm(p, mean = alpha, sd = sigma)
for(t in (p+1):T)

y[t] = rnorm(1,
alpha + sum( beta * y[(t-1):(t-p)] ),
sigma)

plot(t_seq,y,type='l')
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PACF for our example AR3 process
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Predicting the future

▶ Once we have our model we have an easy way to predict the future:

ŷt+1 = α̂ + β̂yt

▶ If we want to forecast further ahead we have to start using the forecast values, e.g.

ŷt+2 = α̂ + β̂ŷt+1

▶ We can create a confidence interval for our predictions by using the standard errors
of α̂ and β̂

▶ We can create a prediction interval by also including the values σ̂ and simulating
from the full probability distribution
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Stationarity

▶ One of the key concepts in time series is stationarity

▶ A time series is said to be weakly stationary if:
1. The mean is stable
2. The variance is stable
3. The autocorrelation doesn’t depend on where you are in the series

▶ The first can be checked from plots of the time series, but the last one is quite
tricky

▶ All AR models are stationary provided the restrictions on β are met
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What if a series isn’t stationary?

▶ If a time series isn’t stationary we might:
▶ stabilise the mean by removing the trend or seasonality (by e.g. using linear regression)
▶ make the variance stable by performing a transformation such as log or Box-Cox
▶ fit a more advanced non-stationary model (see later in the course)

▶ Quite often, when a series is not mean or variance stationary, people will difference
the time series, and fit models only to the differences

▶ You can also seasonally difference the data
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Fitting models in R

▶ The R function Arima in the forecast package will fit AR models for you
▶ To fit an AR(1) model to data y we just type:

Arima(y, order = c(1, 0, 0))

## Series: y
## ARIMA(1,0,0) with non-zero mean
##
## Coefficients:
## ar1 mean
## 0.1305 1.4878
## s.e. 0.0446 0.0526
##
## sigma^2 = 1.053: log likelihood = -721.3
## AIC=1448.6 AICc=1448.65 BIC=1461.24
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Summary

▶ The ACF and PACF are two really useful tools to run on every time series (as well
as a plot of the time series itself)

▶ The AR(p) framework is a class of models for stationary time series which regresses
the current values of the series on past values

▶ A time series is stationary if it has stable mean and standard deviation, and an ACF
which doesn’t change over time

▶ There are lots of ways to make a series stationary. The most common one is
differencing
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