
Class 2: Moving averages and ARMA

Andrew Parnell
andrew.parnell@mu.ie

PRESS RECORD https://andrewcparnell.github.io/TSDA/

1 / 28

https://andrewcparnell.github.io/TSDA/


Learning outcomes

▶ Recognise and understand the basic theory behind MA(1) and MA(q) models
▶ Understand the basic ARMA(p,q) formulation
▶ Know the basics of using the forecast package
▶ Understand the limitations of ARMA forecasting
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Reminder: The most important slide in the course

Almost all of time series is based on two ideas:
1. Base your future predictions on previous values of the data
2. Base your future predictions on how wrong you were in

your past predictions
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Reminder: AR models

▶ An Autoregressive (AR) model works by making the current data point dependent
on the previous value, dampened by a parameter

▶ The usual likelihood used is:

yt ∼ N(α + βyt−1, σ2)

▶ β is usually constrained (naturally via the data) to lie between -1 and 1. Outside
that range the process blows up

▶ The sample PACF is often a good way of diagnosing if an AR model might be
appropriate
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Intro to Moving Average Models

▶ Moving Average (MA) models are similar to AR models but they depend on the
previous residual of the series rather than the value itself

▶ The previous residual is made up of how well we forecasted the last value of the
series

▶ If the previous residual was large (i.e. our forecast was bad) then we want to make
a big change to the next prediction

▶ If the previous residual was small (i.e. our forecast was good) then we might not
want to make much of a change
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Moving average models and the ACF/PACF
▶ Recall that the sample partial autocorrelation function (PACF) can be used to

diagnose whether an AR model is appropriate (and also suggest the order p)
▶ For the MA model, it is the sample autocorrelation function (ACF) that helps

determine the order of the model
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Example 1: MA(1)

▶ The MA(1) model is defined as:

yt = α + θϵt−1 + ϵt

where ϵt ∼ N(0, σ2) as usual
▶ Parameter α represents the overall mean, whilst θ controls the amount of weight

placed on previous residuals
▶ Like the AR model the values of θ are not expected to be outside (-1, 1), and

negative values can sometimes be physically unrealistic
▶ The likelihood version of the model is:

yt ∼ N(α + θϵt−1, σ2)
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Simulating from the MA(1) process
Below is some simple code to simulate from an MA(1) process. Note that the first
values of y and eps need to be initialised
T = 100 # Number of observations
sigma = 1 # Residual sd
alpha = 0 # Mean
theta = runif(1) # Choose a positive value
y = eps = rep(NA,T)
y[1] = alpha
eps[1] = 0
for(t in 2:T) {

y[t] = rnorm(1, mean = alpha + theta * eps[t-1],
sd = sigma)

eps[t] = y[t] - alpha - theta * eps[t-1]
}
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Time series plot
plot(1:T,y,type='l')
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Fitting MA(1) models

▶ We can fit an MA(1) model with the forecast package like before
Arima(y, order = c(0, 0, 1))

## Series: y
## ARIMA(0,0,1) with non-zero mean
##
## Coefficients:
## ma1 mean
## 0.2118 -0.0325
## s.e. 0.0924 0.1120
##
## sigma^2 = 0.8747: log likelihood = -134.21
## AIC=274.43 AICc=274.68 BIC=282.24
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Extending to MA(q)

▶ As with the AR(p) process we can extend this model to have the current value of y
depending on more than one previous residual

▶ The model becomes an MA(q) model with:

yt ∼ N(α + θ1ϵt−1 + θ2ϵt−2 + . . . + θqϵt−q, σ2)

▶ The parameters are as before, except there are now q values of θ.
▶ Usually when estimated they will decrease with q; the older residuals matter less
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Fitting an MA(q) model

Arima(y, order = c(0, 0, 3))

## Series: y
## ARIMA(0,0,3) with non-zero mean
##
## Coefficients:
## ma1 ma2 ma3 mean
## 0.2269 0.0170 -0.0413 -0.0338
## s.e. 0.1005 0.0981 0.0876 0.1111
##
## sigma^2 = 0.8897: log likelihood = -134.04
## AIC=278.07 AICc=278.71 BIC=291.1

▶ Compare the AIC of this model with the previous MA(1) version
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Forecasting an MA value

▶ You can create a one step ahead forecast for an MA(1) model by:

ŷt+1 = α̂ + θ̂ϵt

▶ Forecasts of more than one step ahead will be pretty boring, as every future
prediction of ϵ̂t will be 0

▶ Thus MA(q) models are only really informative if you are forecasting q steps ahead
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Combining AR and MA into ARMA

▶ There is no reason why we have to use just AR or MA on their own
▶ It’s possible to combine them together, for example:

yt = α + βyt−1 + θϵt−1 + ϵt

This is an Autoregressive Moving Average (ARMA) model
▶ It’s often written as ARMA(p,q) where p is the number of AR terms (here 1) and q

the number of MA terms (here also 1)
▶ ARMA models can deal with a very wide variety of flexible time series behaviour,

though they remain stationary
▶ The likelihood format is:

yt ∼ N(α + βyt−1 + θϵt−1, σ2)
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Fitting an ARMA(1, 1) model

Arima(y, order = c(1, 0, 1))

## Series: y
## ARIMA(1,0,1) with non-zero mean
##
## Coefficients:
## ar1 ma1 mean
## 0.1119 0.1085 -0.0323
## s.e. 0.3743 0.3703 0.1153
##
## sigma^2 = 0.8829: log likelihood = -134.17
## AIC=276.33 AICc=276.76 BIC=286.76

▶ Compare again with previous models
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The general ARMA(p, q) framework

▶ The general equation for an ARMA(p, q) model is:

yt = α +
p∑

i=1
βiyt−i +

q∑
j=1

θjϵt−j + ϵt

▶ The values of β and θ have to be tightly controlled to get a series that is stationary,
though this is only really a problem if we want to simulate the time series

▶ Occasionally you will run into problems with Arima because it doesn’t use
maximum likelihood (by default) to fit the models. It uses something faster and
more approximate instead
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Predicting the future with ARMA
▶ The forecast package contains methods to predict into the future
▶ First create a model (here ARMA(2, 1))

my_model = Arima(y, order = c(2, 0, 1))

▶ . . . then forecast. . .
plot(forecast(my_model,h = 10))

Forecasts from ARIMA(2,0,1) with non−zero mean
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A real-world example
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Steps in a time series analysis

1. Plot the data and the ACF/PACF
2. Decide if the data look stationary or not. If not, perform a suitable transformation

and return to 1
3. Guess at a suitable p and q for an ARMA(p, q) model
4. Fit the model
5. Try a few models around it by increasing/decreasing p and q and checking the AIC

(or others)
6. Check the residuals
7. Forecast into the future
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A real example: wheat data
▶ Let’s follow the steps for the wheat data:

wheat = read.csv('../../data/wheat.csv')
plot(wheat$year, wheat$wheat, type = 'l')
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ACF and PACF
par(mfrow = c(1, 2))
acf(wheat$wheat)
pacf(wheat$wheat)
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▶ Suggest starting with AR(1) or AR(3)?
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First model

Arima(wheat$wheat, order = c(1, 0, 0))

## Series: wheat$wheat
## ARIMA(1,0,0) with non-zero mean
##
## Coefficients:
## ar1 mean
## 0.8972 20849.522
## s.e. 0.0826 3615.541
##
## sigma^2 = 10079564: log likelihood = -502.34
## AIC=1010.68 AICc=1011.17 BIC=1016.59
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Next models

▶ Try AR(2), ARMA(1, 1), and ARMA(2, 1)
Arima(wheat$wheat, order = c(2, 0, 0))$aic

## [1] 1012.683
Arima(wheat$wheat, order = c(1, 0, 1))$aic

## [1] 1011.36
Arima(wheat$wheat, order = c(2, 0, 1))$aic

## [1] 1004.125

▶ Best one seems to be ARMA(2, 1). (could also try others)
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Check residuals
▶ Check the residuals of this model

my_model_ARMA21 = Arima(wheat$wheat, order = c(2, 0, 1))
qqnorm(my_model_ARMA21$residuals)
qqline(my_model_ARMA21$residuals)
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Check residuals’ ACF and PACF
par(mfrow=c(1,2))
acf(my_model_ARMA21$residuals)
pacf(my_model_ARMA21$residuals)
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Forecast into the future
plot(forecast(my_model_ARMA21,h=20))

Forecasts from ARIMA(2,0,1) with non−zero mean

0 10 20 30 40 50 60 70

10
00

0
20

00
0

30
00

0
40

00
0

26 / 28



What happened to the forecasts here?

▶ Why did the series diverge rapidly away from what you might have expected?

▶ The answer is that we have fitted a stationary model, i.e. one with constant mean
and variance

▶ The model will just slowly reverts back to that mean over time. The speed at which
it reverts will depend on the amount of autocorrelation in the series

▶ The solution to this lies in better identification of the trend. See the next lecture!
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Summary

▶ MA(q) models are used to create future forecasts based on the error in the previous
forecasts

▶ ARMA models combine AR and MA ideas together
▶ The forecast package allows us to fit all of these models
▶ We need to be a bit careful with forecasts that assume stationarity - they will

mean-revert
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