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Learning outcomes

▶ Be able to add on components to ARIMA models
▶ Understand the issues with fitting ARIMAX and other extensions to ARIMA models
▶ Understand how to create forecasts and accuracy measures with forecast
▶ More on model choice
▶ Know the basics of forecast calibration and scoring rules
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Bolting together models

▶ As we have already seen we can combine bits of models together, such as RW, AR
and MA, into ARIMA

▶ The forecast package in R can fit these models really fast
▶ Unfortunately we need to be able to fit these models by hand (e.g. in JAGS or

Stan) to create really interesting and complicated models
▶ The one extra really useful part of forecast is the ability to be able to add in

covariates
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The ARIMAX framework

▶ The ARIMAX framework (ARIMA with eXplanatory variables) is just another
extension to the ARIMA framework

▶ The basic ARIMAX model for a possible differenced series zt is:

zt ∼ N(α + AR terms + MA terms + ϕ1x1t + . . . + ϕr xrt , σ2)

where we now include r possible explanatory variables with coefficients ϕ1, . . . , ϕr
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Warnings about ARIMAX models

There are two key things to be wary of when using this type of ARIMAX model:

1. It’s hard to interpret the ϕ values. It is not the case (as in normal regression) that
an increase of 1 unit in x will lead to an increase of ϕ in y because of all the AR
terms

2. If you are differencing the data before running the model, you also need to
difference the explanatory variables

If you’re just interested in forecasting then the problem in 1 goes away, but if you are
interested in the causation of x on y you can fit the regression model separately or try a
dynamic regression model (see later in course)
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forecast and ARIMAX

The forecast package fits a slightly different version of the ARIMAX model:

yt = ϕ1x1t + . . . + ϕr xrt + et

et ∼ N(α + AR terms + MA terms, σ2)

This has the advantage of retaining the interpretation on the ϕ parameters but now isn’t
exactly an ARIMA model

▶ forecast calls this a regression with ARMA errors
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An ARIMAX model for the wheat data
wheat = read.csv('../../data/wheat.csv')
plot(wheat$year, wheat$wheat, type = 'l')
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- Let’s see if we can fit a time series model with year as the explanatory variable
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ACF/PACF plots
par(mfrow = c(1, 2))
acf(wheat$wheat)
pacf(wheat$wheat)
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A first ARIMAX model
▶ Try ARIMAX(1, 0, 1)

Arima(wheat$wheat, order = c(1, 0, 1), xreg = wheat$year)

## Series: wheat$wheat
## Regression with ARIMA(1,0,1) errors
##
## Coefficients:
## ar1 ma1 intercept
## -0.2100 1.000 -558900.85
## s.e. 0.1504 0.056 64745.44
## xreg
## 291.6336
## s.e. 32.5839
##
## sigma^2 = 5317994: log likelihood = -485.31
## AIC=980.61 AICc=981.89 BIC=990.46
## Compare with:
Arima(wheat$wheat, order = c(1, 1, 1))$aic

## [1] 985.4555
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Checking the residuals
my_model_ARIMAX101 = Arima(wheat$wheat,

order = c(1, 0, 1),
xreg = wheat$year)

qqnorm(my_model_ARIMAX101$residuals)
qqline(my_model_ARIMAX101$residuals)
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Predictions
plot(forecast(my_model_ARIMAX101, xreg = 2014:2033, h=20))

Forecasts from Regression with ARIMA(1,0,1) errors
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A cheat way of skipping model choice
▶ The forecast package has a cheat function which will fit all of the possible ARIMA

models for you and report the best one. It’s called auto.arima

auto.arima(wheat$wheat, xreg = wheat$year)

## Series: wheat$wheat
## Regression with ARIMA(3,0,0) errors
##
## Coefficients:
## ar1 ar2 ar3
## 0.5833 -0.4929 0.3077
## s.e. 0.1577 0.1564 0.1570
## intercept xreg
## -567234.43 295.8574
## s.e. 74931.99 37.7244
##
## sigma^2 = 6388181: log likelihood = -488.18
## AIC=988.35 AICc=990.18 BIC=1000.17
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Model choice
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Choosing different models: AICc and BIC

▶ So far we have just been using AIC to choose between models
▶ AIC is defined for an ARIMA model as:

AIC = −2 log L + 2(p + q + 1)

▶ The forecast package also reports the Bayesian Information Criterion (BIC) which is:

BIC = −2 log L + (p + q + 1) log n

where n is the number of data points (after differencing)
▶ It also reports the ‘corrected’ AIC (AICc) value which is a very slight variation on

the standard AIC for use with smaller sample sizes
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Measuring model complexity

▶ These information criteria all work by adding on a function of the number of
parameters to the deviance, designed to approximate some performance criterion

▶ AIC was invented to match leave-one-out cross validation error (more on this later).
BIC to match the probability of the model given the data

▶ The version JAGS uses is known as the Deviance Information Criterion (DIC) and is
built specifically to penalise the deviance by the effective number of parameters,
which it calls pD

▶ The version Stan uses is known as the Wanatabe Akaike Information Criterion
(WAIC) and use a different method to estimate an effective number of parameters
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An alternative; cross-validation

▶ Often the gold standard by which time series models are judged as how well they
forecast future values of the series

▶ Without waiting for more data to become available, we can remove some of the
data points at the end of the series, fit the model, and forecast into the future.
This is leave one out cross validation or LOO-CV

▶ LOO_CV is very computationally intensive as we have to re-fit the model and get
new parameter estimates at every step
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Leave none out cross validation
▶ We can get a cheat version of LOO-CV by just using the fitted values from the

ARIMA model fit

▶ The Arima function stores the one step ahead forecasts in the object fitted:
plot(wheat$wheat, type = 'l')
lines(fitted(my_model_ARIMAX101), col = 'red')
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Accuracy measures from forecast

▶ For the fitted values you can also use measures of accuracy such as root mean
square error

▶ These are all calculated by comparing the fitted values with the forecasted values

▶ It actually provides way more:
accuracy(my_model_ARIMAX101)

## ME RMSE MAE
## Training set 30.48566 2217.349 1808.632
## MPE MAPE
## Training set -1.347048 9.968913
## MASE ACF1
## Training set 0.7143871 -0.04550905
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Proper LOO-CV

▶ The forecast package has a function called CVar which implements leave one out
cross validation. However it only works for AR models - not full ARIMA ones

▶ If you want to do ARIMA LOO-CV (sometimes called rolling-origin forecasting) you
have to write it yourself

(from https://robjhyndman.com/hyndsight/tscv/)
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Implementing loo-CV for an ARIMA model
n_min = 30 # minimum length for model
n = nrow(wheat)
ae = forecasts = rep(NA, n - n_min)
# Loop through time series
for(i in 1:(n-n_min)) {

# Fit to the training set
curr_model = Arima(wheat$wheat[1:(i + n_min - 1)],

c(1, 1, 1))
# Create 1 step ahead forecasts
forecasts[i] = forecast(curr_model, h = 1)[['mean']]
# Get mean absolute error
ae[i] = abs(forecasts[i] - wheat$wheat[i + n_min])

}
mean(ae)

## [1] 2385.753
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Plotting the forecasts
plot(wheat$wheat, type = 'l')
lines(31:n, forecasts, col = 'red')
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Forecasting and scoring rules

▶ A common mantra in time series forecasting is to aim for sharpness under
calibration

▶ Sharpness refers to the variance of the forecast. A sharp forecast is one with a low
variance

▶ However, for a forecast to be useful, it needs to be calibrated. This means that if
you predict a 20% chance of rain, it should rain on 20% of those days. A sharp
forecast is only useful if it is calibrated

▶ Often forecasters use scoring rules to evaluate whether a forecast is calibrated or
not. This is a very broad issue and beyond the remit of this course

22 / 23



Summary

▶ We now know how to incorporate explanatory variables in ARIMA models (and we
also know the pitfalls of doing so)

▶ We know how to compare models using AIC, AICc, BIC and cross validation
▶ We learnt how to create forecast accuracy
▶ We’ve learnt a little bit about forecast calibration
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