
Class 2: Creating bespoke time series models using Bayes

Andrew Parnell
andrew.parnell@mu.ie

https://andrewcparnell.github.io/TSDA/

PRESS RECORD

1 / 33

https://andrewcparnell.github.io/TSDA/

Learning outcomes

▶ Know the difference between Frequentist and Bayesian statistics
▶ Be able to follow the syntax of JAGS and Stan
▶ Know how to fit some basic AR and regression models in JAGS and Stan
▶ Be able to manipulate the output of these models

2 / 33

Who was Bayes?
An essay towards solving a problem on the doctrine of chances (1763)

P(A|B) = P(B|A)P(A)
P(B)

3 / 33

Bayes theorem in english

Bayes’ theorem can be written in words as:

posterior is proportional to likelihood times prior

. . . or . . .
posterior ∝ likelihood × prior

Each of the three terms posterior, likelihood, and prior are probability distributions
(pdfs).

In a Bayesian model, every item of interest is either data (which we will write as x) or
parameters (which we will write as θ). Often the parameters are divided up into those of
interest, and other nuisance parameters

4 / 33

Bayes theorem in maths

Bayes’ equation is usually written mathematically as:

p(θ|x) ∝ p(x |θ) × p(θ)

or, more fully:
p(θ|x) = p(x |θ) × p(θ)

p(x)

▶ The posterior is the probability of the parameters given the data
▶ The likelihood is the probability of observing the data given the parameters

(unknowns)
▶ The prior represents external knowledge about the parameters

5 / 33

What’s different from what we were doing before?

▶ We still have a likelihood and parameters to estimate
▶ We now also have some extra constraints (defined by us) called the prior distribution
▶ There is a clever Bayesian algorithm to create the resulting parameter estimates

and their uncertainties
▶ This full probability distribution of the outputs is the posterior distribution
▶ The full posterior probability distribution is provided to us as a set of samples

(recall class 2 on day 1)

6 / 33

Choosing a prior

▶ The key to choosing a prior distribution is to choose values which you believe
represent the reasonable range that the parameter can take, or come from a related
study in the literature

▶ A prior which is a strong constraint on the parameters is called an informative prior
▶ Some people argue that informative priors are bad, others that they are absolutely

necessary in every model
▶ Sometimes an informative prior can be the difference between being able to fit the

model or not
▶ Most people forget that choosing a likelihood probability distribution is exactly the

same task as choosing a prior

7 / 33

Practical differences between frequentist statistics and Bayes

▶ In frequentist statistics you tend to get a single best estimate of a parameter and a
standard error, often assumed normally distributed, and a p-value

▶ In Bayesian statistics you get a large set of samples of the parameter values which
match the data best. You get to choose what you do with these

▶ In frequentist statistics if the p-value is less than 0.05 you win. If not you cry and
try a different model

▶ In Bayesian statistics you try to quantify the size of an effect from the posterior
distribution, or find a particular posterior probability, e.g. P(slope > 0 given the
data).

8 / 33

Stan and JAGS

▶ We will be using two different software tools to calculate posterior distributions.
These represent the state of the art for user-friendly, research quality Bayesian
statistics.

▶ Both have their own programming language which you can write in R and then fit
the models to get the posterior distribution

▶ All we have to do in the programming language is specify the likelihood and the
priors, and give it the data. The software does the rest

9 / 33

Steps for running JAGS and Stan

1. Write some Stan or JAGS code which contains the likelihood and the prior(s)
2. Get your data into a list so that it matches the data names used in the Stan/JAGS

code
3. Run your model through Stan/JAGS
4. Get the posterior output
5. Check convergence of the posterior probability distribution
6. Create the output that you want (forecasts, etc)

10 / 33

Stan vs JAGS

▶ Stan positives: very flexible, uses sensible distribution names, everything is declared,
lots of documentation support, written by people at the top of the field

▶ Stan negatives: cannot have discrete parameters, some odd declaration choices,
slower to run code, code tends to be longer

▶ JAGS positives: very quick for simple models, no declarations required, a bit older
than Stan so more queries answered online

▶ JAGS negatives: harder to get complex models running, not as fancy an algorithm
as Stan, crazy way of specifying normal distributions

11 / 33

Reminder: sea level example
sl = read.csv('../../data/tide_gauge.csv')
with(sl, plot(year_AD, sea_level_m))

1880 1900 1920 1940 1960 1980 2000

−
0.

15
−

0.
10

−
0.

05
0.

00
0.

05

year_AD

se
a_

le
ve

l_
m

12 / 33

Fitting linear regression models in JAGS
library(R2jags)
jags_code = '
model {

Likelihood
for(i in 1:N) {

y[i] ~ dnorm(alpha + beta*x[i], sigmaˆ-2)
}
Priors
alpha ~ dnorm(0, 100ˆ-2)
beta ~ dnorm(0, 100ˆ-2)
sigma ~ dunif(0, 100)

}'
jags_run = jags(data = list(N = nrow(sl),

y = sl$sea_level_m,
x = sl$year_AD),

parameters.to.save = c('alpha', 'beta',
'sigma'),

model.file = textConnection(jags_code))
13 / 33

Output

print(jags_run)

Inference for Bugs model at "4", fit using jags,
3 chains, each with 2000 iterations (first 1000 discarded)
n.sims = 3000 iterations saved
mu.vect sd.vect 2.5% 25% 50%
alpha -3.063 0.040 -3.140 -3.091 -3.063
beta 0.002 0.000 0.001 0.002 0.002
sigma 0.009 0.001 0.008 0.008 0.009
deviance -864.744 2.498 -867.620 -866.552 -865.372
75% 97.5% Rhat n.eff
alpha -3.036 -2.986 1.001 3000
beta 0.002 0.002 1.001 3000
sigma 0.009 0.010 1.001 3000
deviance -863.624 -858.396 1.002 3000
##
For each parameter, n.eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor (at convergence, Rhat=1).
##
DIC info (using the rule, pD = var(deviance)/2)
pD = 3.1 and DIC = -861.6
DIC is an estimate of expected predictive error (lower deviance is better).

14 / 33

Plotted output
plot(jags_run)

80% interval for each chain R−hat
−1000

−1000

−500

−500

0

0

500

500

1 1.5 2+

1 1.5 2+

1 1.5 2+

1 1.5 2+

1 1.5 2+

1 1.5 2+

alpha
beta
deviance

medians and 80% intervals

alpha

−3.15

−3.1

−3.05

−3

beta

0.0015

0.00152

0.00154

0.00156

0.00158

deviance

−870

−865

−860

sigma

0.008

0.009

0.01

Bugs model at "4", fit using jags, 3 chains, each with 2000 iterations (first 1000 discarded)

15 / 33

What do the results actually mean?

▶ We now have access to the posterior distribution of the parameters:
post = jags_run$BUGSoutput$sims.matrix
head(post)

alpha beta deviance sigma
[1,] -3.064493 0.001539137 -867.3278 0.008212547
[2,] -3.082081 0.001547945 -865.1329 0.007875490
[3,] -3.078762 0.001546096 -866.8184 0.008756613
[4,] -3.046519 0.001529404 -865.9865 0.008928899
[5,] -3.101652 0.001558289 -865.2559 0.009340480
[6,] -3.036954 0.001524858 -866.2020 0.008053733

16 / 33

Plots of output
alpha_mean = mean(post[,'alpha'])
beta_mean = mean(post[,'beta'])
plot(sl$year_AD, sl$sea_level_m)
lines(sl$year_AD, alpha_mean +

beta_mean * sl$year_AD, col = 'red')

1880 1900 1920 1940 1960 1980 2000

−
0.

15
−

0.
05

0.
05

sl$year_AD

sl
$s

ea
_l

ev
el

_m

17 / 33

Running the same model in Stan
stan_code = '
data {

int<lower=0> N;
vector[N] y;
vector[N] x;

}
parameters {

real alpha;
real beta;
real<lower=0> sigma;

}
model {

y ~ normal(alpha + beta * x, sigma);
alpha ~ normal(0, 100);
beta ~ normal(0, 100);
sigma ~ uniform(0, 100);

}
'

18 / 33

Running the Stan version

library(rstan)
stan_run = stan(data = list(N = nrow(sl),

y = sl$sea_level_m,
x = sl$year_AD/1000),

model_code = stan_code)

19 / 33

Stan output
print(stan_run)

Inference for Stan model: 425dcdc3a818151313cabf3f64999e4f.
4 chains, each with iter=2000; warmup=1000; thin=1;
post-warmup draws per chain=1000, total post-warmup draws=4000.
##
mean se_mean sd 2.5% 25% 50% 75%
alpha -3.06 0.00 0.04 -3.14 -3.09 -3.06 -3.03
beta 1.54 0.00 0.02 1.50 1.52 1.54 1.55
sigma 0.01 0.00 0.00 0.01 0.01 0.01 0.01
lp__ 547.12 0.04 1.27 543.95 546.55 547.46 548.05
97.5% n_eff Rhat
alpha -2.98 1093 1
beta 1.58 1093 1
sigma 0.01 1351 1
lp__ 548.55 1103 1
##
Samples were drawn using NUTS(diag_e) at Mon Nov 14 10:51:21 2022.
For each parameter, n_eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor on split chains (at
convergence, Rhat=1).

20 / 33

Stan plots
plot(stan_run)

alpha

beta

sigma

−2 0 2

21 / 33

An AR(1) model in JAGS

jags_code = '
model {

Likelihood
for (t in 2:N) {

y[t] ~ dnorm(alpha + beta * y[t-1], sigmaˆ-2)
}

Priors
alpha ~ dnorm(0, 100ˆ-2)
beta ~ dunif(-1, 1)
sigma ~ dunif(0, 100)

}
'

22 / 33

Run the model on the sheep
sheep = read.csv('../../data/sheep.csv')
plot(sheep$year, sheep$sheep, type = 'l')

1960 1970 1980 1990 2000

25
0

30
0

35
0

40
0

45
0

sheep$year

sh
ee

p$
sh

ee
p

jags_run = jags(data = list(N = nrow(sheep),
y = sheep$sheep),

parameters.to.save = c('alpha',
'beta',
'sigma'),

model.file = textConnection(jags_code))

23 / 33

Output

print(jags_run)

Inference for Bugs model at "5", fit using jags,
3 chains, each with 2000 iterations (first 1000 discarded)
n.sims = 3000 iterations saved
mu.vect sd.vect 2.5% 25% 50% 75%
alpha 11.846 5.315 3.848 7.744 11.029 15.174
beta 0.979 0.015 0.946 0.969 0.982 0.992
sigma 12.722 1.369 10.405 11.722 12.615 13.581
deviance 362.745 2.206 360.271 361.120 362.159 363.753
97.5% Rhat n.eff
alpha 23.429 1.010 220
beta 0.999 1.020 140
sigma 15.643 1.001 2500
deviance 368.401 1.004 680
##
For each parameter, n.eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor (at convergence, Rhat=1).
##
DIC info (using the rule, pD = var(deviance)/2)
pD = 2.4 and DIC = 365.2
DIC is an estimate of expected predictive error (lower deviance is better).

24 / 33

Plotted output
plot(jags_run)

80% interval for each chain R−hat
0

0

200

200

400

400

1 1.5 2+

1 1.5 2+

1 1.5 2+

1 1.5 2+

1 1.5 2+

1 1.5 2+

alpha
beta
deviance

medians and 80% intervals

alpha

0

10

20

30

beta

0.94

0.96

0.98

1

deviance

360

362

364

366

sigma

10

12

14

16

Bugs model at "5", fit using jags, 3 chains, each with 2000 iterations (first 1000 discarded)

25 / 33

Plots of one step ahead forecasts
post = jags_run$BUGSoutput$sims.matrix
alpha_mean = mean(post[,'alpha'])
beta_mean = mean(post[,'beta'])
plot(sheep$year, sheep$sheep)
N = nrow(sheep)
lines(sheep$year[2:N], alpha_mean +

beta_mean * sheep$sheep[1:(N-1)], col = 'red')

1960 1970 1980 1990 2000

25
0

30
0

35
0

40
0

45
0

sheep$year

sh
ee

p$
sh

ee
p

26 / 33

What are JAGS and Stan doing in the background?

▶ JAGS and Stan run a stochastic algorithm called Markov chain Monte Carlo to
create the samples from the posterior distribution

▶ This involves:
1. Guessing at initial values of the parameters. Scoring these against the likelihood and

the prior to see how well they match the data
2. Then iterating:

2.1 Guessing new parameter values which may or may not be similar to the previous values
2.2 Seeing whether the new values match the data and the prior by calculating new scores
2.3 If the scores for the new parameters are higher, keep them. If they are lower, keep them

with some probability depending on how close the scores are, otherwise discard them
and keep the old values

▶ What you end up with is a set of parameter values for however many iterations you
chose.

27 / 33

How many iterations?

▶ Ideally you want a set of posterior parameter samples that are independent across
iterations and is of sufficient size that you can get decent estimates of uncertainty

▶ There are three key parts of the algorithm that affect how good the posterior
samples are:

1. The starting values you chose. If you chose bad starting values, you might need to
discard the first few thousand iterations. This is known as the burn-in period

2. The way you choose your new parameter values. If they are too close to the previous
values the MCMC might move too slowly so you might need to thin the samples out
by taking e.g. every 5th or 10th iteration

3. The total number of iterations you choose. Ideally you would take millions but this
will make the run time slower

JAGS and Stan have good default choices for these but for complex models you often
need to intervene

28 / 33

Plotting the iterations
You can plot the iterations for all the parameters with traceplot, or for just one with
e.g.
plot(post[,'alpha'], type = 'l')

0 500 1000 1500 2000 2500 3000

0
10

20
30

Index

po
st

[,
"a

lp
ha

"]

A good trace plot will show no patterns or runs, and will look like it has a stationary
mean and variance

29 / 33

How many chains?

▶ Beyond increasing the number of iterations, thinning, and removing a burn-in
period, JAGS and Stan automatically run multiple chains

▶ This means that they start the algorithm from 3 or 4 different sets of starting
values and see if each chain converges to the same posterior distribution

▶ If the MCMC algorithm has converged then each chain should have the same mean
and variance.

▶ Both JAGS and Stan report the Rhat value, which is close to 1 when all the chains
match

▶ It’s about the simplest and quickest way to check convergence. If you get Rhat
values above 1.1, run your MCMC for more iterations

30 / 33

What else can I do with the output?

▶ We could create credible intervals (Bayesian confidence intervals):
apply(post, 2, quantile, probs = c(0.025, 0.975))

alpha beta deviance sigma
2.5% 3.847645 0.9463530 360.2710 10.40508
97.5% 23.429095 0.9992612 368.4007 15.64275

31 / 33

What else can I do with the output? (part 2)
▶ Or histograms

hist(post[,'beta'], breaks = 30)

Histogram of post[, "beta"]

post[, "beta"]

F
re

qu
en

cy

0.92 0.94 0.96 0.98 1.00

0
10

0
20

0
30

0
40

0

32 / 33

Summary

▶ Bayesian methods just add on a set of extra constraints on to the likelihood called
prior distributions

▶ We now know how to run some simple time series models in JAGS and Stan
▶ We know that the fitting algorithm (MCMC) produces best parameter estimates

and their uncertainties
▶ We have to do a little bit more work to get the predictions out of JAGS or Stan
▶ The big advantage of using these methods is the extra flexibility we get from being

able to write our own models

33 / 33

