
Class 3: Model choice and forecasting with Bayes

Andrew Parnell
andrew.parnell@mu.ie

https://andrewcparnell.github.io/TSDA/

PRESS RECORD

1 / 23

https://andrewcparnell.github.io/TSDA/

Learning outcomes

▶ See some JAGS code for fitting AR(p), ARMA(p, q) and ARIMAX(p, d, q) models
▶ Know to check model fit for a Bayesian model using the posterior predictive

distribution
▶ Know how to create k-step ahead forecasts with uncertainty using JAGS

2 / 23

JAGS code for an AR(p) model
model_code = '
model {

Likelihood
for (t in (p+1):N) {

y[t] ~ dnorm(mu[t], sigmaˆ-2)
mu[t] <- alpha + inprod(beta, y[(t-p):(t-1)])

}

Priors
alpha ~ dnorm(0, 100ˆ-2)
for (i in 1:p) {

beta[i] ~ dnorm(0, 100ˆ-2)
}
sigma ~ dunif(0, 100)

}'

3 / 23

JAGS code for an ARMA(p, q) model
model_code = '
model
{

Set up residuals
for(t in 1:max(p,q)) {

eps[t] <- z[t] - alpha
}
Likelihood
for (t in (max(p,q)+1):N) {

z[t] ~ dnorm(alpha + ar_mean[t] + ma_mean[t], sigmaˆ-2)
ma_mean[t] <- inprod(theta, eps[(t-q):(t-1)])
ar_mean[t] <- inprod(beta, z[(t-p):(t-1)])
eps[t] <- z[t] - alpha - ar_mean[t] - ma_mean[t]

}
Priors
alpha ~ dnorm(0, 10ˆ-2)
for (i in 1:q) {

theta[i] ~ dnorm(0, 10ˆ-2)
}
for(i in 1:p) {

beta[i] ~ dnorm(0, 10ˆ-2)
}
sigma ~ dunif(0, 100)

}
'

4 / 23

JAGS code for an ARIMAX model (shortened)
model_code = '
model
{

...
Likelihood
for (t in (max(p,q)+1):N) {

z[t] ~ dnorm(alpha + ar_mean[t] + ma_mean[t] + reg_mean[t],
sigmaˆ-2)

ma_mean[t] <- inprod(theta, eps[(t-q):(t-1)])
ar_mean[t] <- inprod(beta, z[(t-p):(t-1)])
reg_mean[t] <- inprod(phi, x[t,])
eps[t] <- z[t]-alpha-ar_mean[t]-ma_mean[t]-reg_mean[t]

}
Priors
...
for(i in 1:k) {

phi[i] ~ dnorm(0, 100ˆ-2)
}
...

}
'

5 / 23

Fitting a JAGS ARIMA model

▶ Let’s fit an ARIMA(1, 0, 1) model to the wheat data
wheat = read.csv('../../data/wheat.csv')
jags_data = with(wheat,

list(N = length(wheat) - 1,
z = scale(wheat)[,1],
q = 1,
p = 1))

jags_run = jags(data = jags_data,
parameters.to.save = c('alpha',

'theta',
'beta',
'sigma'),

model.file = textConnection(model_code))

6 / 23

Checking output
print(jags_run)

Inference for Bugs model at "4", fit using jags,
3 chains, each with 2000 iterations (first 1000 discarded)
n.sims = 3000 iterations saved
mu.vect sd.vect 2.5% 25%
alpha 0.050 0.069 -0.106 0.021
beta 0.824 0.224 0.318 0.656
sigma 0.543 0.061 0.441 0.501
theta -0.245 0.447 -0.838 -0.642
deviance 80.854 4.294 73.962 77.236
50% 75% 97.5% Rhat
alpha 0.050 0.080 0.196 1.006
beta 0.912 1.006 1.072 1.021
sigma 0.537 0.579 0.684 1.001
theta -0.374 0.171 0.581 1.023
deviance 81.227 83.621 89.878 1.014
n.eff
alpha 3000
beta 110
sigma 3000
theta 91
deviance 150
##
For each parameter, n.eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor (at convergence, Rhat=1).
##
DIC info (using the rule, pD = var(deviance)/2)
pD = 9.1 and DIC = 90.0
DIC is an estimate of expected predictive error (lower deviance is better).

7 / 23

Checking model fit

▶ We have covered how to compare fits in models by comparing e.g. AIC or running
cross-validation

▶ An extra way available via JAGS or Stan is to simulate from the posterior
distribution of the parameters, and subsequently simulate from the likelihood to see
if the these data match the real data we observed

▶ This is known as a posterior predictive check

8 / 23

Posterior predictive distribution in JAGS
▶ The easiest way is to put an extra line in the JAGS code, e.g. AR(1):

jags_code = '
model {

Likelihood
for (t in 2:N) {

y[t] ~ dnorm(alpha + beta * y[t-1], sigmaˆ-2)
y_pred[t] ~ dnorm(alpha + beta * y[t-1], sigmaˆ-2)

}

Priors
alpha ~ dnorm(0, 100ˆ-2)
beta ~ dunif(-1, 1)
sigma ~ dunif(0, 100)

}
'

9 / 23

Posterior predictive outputs
pars = jags_run$BUGSoutput$sims.list$y_pred
plot(sheep$sheep[2:nrow(sheep)], apply(pars,2,'mean'))
abline(a=0, b = 1, col = 'red')

250 300 350 400 450

25
0

30
0

35
0

40
0

45
0

sheep$sheep[2:nrow(sheep)]

ap
pl

y(
pa

rs
, 2

, "
m

ea
n"

)

10 / 23

Creating predictions inside the JAGS model

▶ The posterior predictive check for a time series model is really just a check of the
one step ahead predictions. However, posterior predictive checks are useful for all
models, and are even more informative in complex models

▶ We could create the one-step ahead predictions outside JAGS in R code, but it’s
usually easier to do it inside the code itself

▶ We don’t have to stop at one step ahead predictions, we can move on to 2 step
ahead or further. We would expect the performance of the models to deteriorate
the further ahead we predict

11 / 23

Two step-head predictions for an AR(1) model
jags_code = '
model {

Likelihood
for (t in 2:N) {

y[t] ~ dnorm(alpha + beta * y[t-1], sigmaˆ-2)
y_one_ahead[t] ~ dnorm(alpha + beta * y[t-1],

sigmaˆ-2)
}
for (t in 3:N) {

y_two_ahead[t] ~ dnorm(alpha + beta * y_one_ahead[t-1],
sigmaˆ-2)

}

Priors
alpha ~ dnorm(0, 100ˆ-2)
beta ~ dunif(-1, 1)
sigma ~ dunif(0, 100)

}
'

12 / 23

Output
one_ahead = jags_run$BUGSoutput$sims.list$y_one_ahead
two_ahead = jags_run$BUGSoutput$sims.list$y_two_ahead
plot(sheep$sheep[2:nrow(sheep)], apply(one_ahead,2,'mean'))
points(sheep$sheep[3:nrow(sheep)], apply(two_ahead,2,'mean'),

col = 'blue', pch = 19)
abline(a=0, b = 1, col = 'red')

250 300 350 400 450

25
0

30
0

35
0

40
0

45
0

sheep$sheep[2:nrow(sheep)]

ap
pl

y(
on

e_
ah

ea
d,

 2
, "

m
ea

n"
)

13 / 23

JAGS and the NA trick

▶ What if we want to create a single set of longer predictions at the end of the data
set?

▶ So far we have been giving JAGS the data in a list. It looks up these objects in the
model_code file and treats all the others as parameters to be estimated

▶ If you set some of the values in your data list to the value NA (R’s missing value
placeholder) JAGS will treat these missing data as parameters to be estimated

▶ This is especially useful for time series as we can create extra NA y values at the
end of our series, and JAGS will magically turn these into future forecasts

14 / 23

The NA trick in action
Start with a simple AR(1) model
model_code = '
model
{

Likelihood
for (t in 2:N) {

y[t] ~ dnorm(alpha + beta * y[t-1], sigmaˆ-2)
}
Priors
alpha ~ dnorm(0, 100ˆ-2)
beta ~ dunif(-1, 1)
sigma ~ dunif(0, 100)

}
'

15 / 23

The NA trick in action (cont)

num_forecasts = 10 # 10 extra years
jags_run = jags(data = list(N = nrow(sheep) +

num_forecasts,
y = c(sheep$sheep,

rep(NA,
num_forecasts))),

parameters.to.save = 'y',
model.file=textConnection(model_code))

16 / 23

NA trick plots
y_pred = jags_run$BUGSoutput$sims.list$y
y_med = apply(y_pred,2,'median')
plot(c(sheep$year,2008:2017),y_med,type='l')

1960 1970 1980 1990 2000 2010

25
0

30
0

35
0

40
0

45
0

c(sheep$year, 2008:2017)

y_
m

ed

17 / 23

Notes about the NA trick
▶ Here I’ve just plotted the mean forecasts, but we have the full posterior distribution

so it’s easy to create lower and upper credible intervals if required
apply(y_pred,2,'quantile', c(0.05, 0.95))[,48:57]

[,1] [,2] [,3] [,4]
5% 436.1814 428.6191 422.6929 419.5441
95% 479.2803 490.1034 498.9602 507.0114
[,5] [,6] [,7] [,8]
5% 415.3859 411.2846 408.9533 406.5278
95% 513.4183 519.5220 527.8113 534.6861
[,9] [,10]
5% 401.3987 400.4471
95% 541.8916 549.6967

▶ The NA trick is fantastically in all kinds of modelling situations, e.g. where we have
genuinely missing data.

18 / 23

Choosing different models: DIC

▶ So far we have met a wide array of discrete-time time series models, all of which
involve choosing a p (AR component), a q (MA component), and a d (differencing
component)

▶ We need a principled method to choose the best values of these. It will always be
the case that increasing these values will lead to a better fit

▶ There are several proposed methods for doing this:
1. Treat the model as another parameter (Bayes factors and reversible jump)
2. Remove some of the data and predict the left out data (Cross-validation)
3. Use statistical theory to penalise the fit of the model (Information Criteria)

▶ All of these are good and useful, but number 3 is implemented by JAGS for us to
use through the DIC

19 / 23

The Deviance Information Criterion

▶ As JAGS is running through the iterations, it is constantly calculating the value of
the likelihood, the probability of the data given the parameters. JAGS reports this
as the deviance which is -2 times the log of the likelihood

▶ For a good set of parameters the value of the deviance should be high, and the
model once converged should reach a stable value of the deviance

▶ If you run the model with, e.g. an extra AR term, you’d find that the deviance
(once the model had converged) would be slightly higher

▶ The idea behind information criteria, as we have seen, is to penalise the deviance by
a measure of the complexity of the model

20 / 23

Measuring model complexity

▶ Measuring model complexity isn’t quite so simple in the Bayesian world as the
number of parameters, in the presence of prior information, can be hard to estimate

▶ The version JAGS uses is known as the Deviance Information Criterion (DIC) and is
built specifically to penalise the deviance by the effective number of parameters,
which it calls pD

21 / 23

The components of DIC

▶ JAGS provides the DIC whenever we call the print command on a model run
DIC info (using the rule, pD = var(deviance)/2)
pD = 6.9 and DIC = -261.1

▶ Here pD estimates the effective number of parameters in the model and the DIC is
calculated as the deviance plus the pD value

▶ The usual practice is to run models of differing complexity (e.g. with differing
values of p, d , and q) and choose the model with the lowest DIC

22 / 23

Summary

▶ We have seen some JAGS code for some of the more complicated models we have
met

▶ We have fitted them to some of the data sets we have met
▶ We know how to create one step ahead (or more) forecasts for a JAGS model

23 / 23

