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Learning outcomes

▶ Understand how to fit seasonal models in forecast and JAGS
▶ Understand seasonal differencing and sARIMA models
▶ Know the difference between time and frequency domain models and be able to

implement a basic Fourier model
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Seasonal time series

▶ So far we haven’t covered how to deal with data that are seasonal in nature

▶ These data generally fall into two categories:
1. Data where we know the frequency or frequencies (e.g. monthly data on a yearly cycle,

frequency = 12)
2. Data where we want to estimate the frequencies (e.g. climate time series, animal

populations, etc)

▶ The former are easier, and there are many techniques for inducing seasonal
behaviour

▶ The latter are much more interesting. The ACF and PACF can help, but we can
usually do much better by creating a power spectrum
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An example seasonal series
CO2 = read.csv(file = '../../data/CO2.csv',

na.strings = -99.99)
CO2_1990 = CO2[CO2$year >= 1990, ]
with(CO2_1990, plot(1:nrow(CO2_1990), CO2_ppm, type = 'l',

ylab = 'CO2 (parts per million)',
xlab = 'Year', las = 1))
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ACF and PACF
par(mfrow = c(1, 2))
acf(CO2_1990$CO2_ppm)
pacf(CO2_1990$CO2_ppm)
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Seasonal time series 1: including seasonality as a covariate

▶ The simplest way is to include month as a covariate in a regression type model
CO2_1990$mfac = model.matrix(~ as.factor(CO2_1990$month) - 1)
colnames(CO2_1990$mfac) = month.abb
lm(CO2_ppm ~ year + mfac - 1, data = CO2_1990)

##
## Call:
## lm(formula = CO2_ppm ~ year + mfac - 1, data = CO2_1990)
##
## Coefficients:
## year mfacJan mfacFeb mfacMar mfacApr mfacMay mfacJun
## 1.936 -3502.265 -3501.467 -3500.562 -3499.231 -3498.793 -3499.453
## mfacJul mfacAug mfacSep mfacOct mfacNov mfacDec
## -3501.077 -3503.160 -3504.667 -3504.467 -3503.029 -3501.590
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Forecasts
CO2_ts = ts(CO2_1990$CO2_ppm, frequency = 12,

start = c(1990, 1))
s_model_1 = tslm(CO2_ts ~ trend + season)
plot(forecast(s_model_1, h = 24))
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What is the time series model doing here?

▶ This is just a regression model, so that:

yt = βyeart + γ1Jant + γ2Febt + γ3Mart + . . . + γ12Dect + ϵt

▶ You can do this using lm or using forecast’s special function for linear regression
forecasting tslm

▶ The tslm function is clever because it can automatically create the seasonal
indicator variables

▶ (Remember that when dealing with indicator variables you have to drop one factor
level for the model to fit if you want to include an intercept)
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Seasonal time series 2: seasonal differencing
▶ We have already met methods which difference the data (possibly multiple times)

at lag 1

▶ We can alternatively create a seasonal difference by differencing every e.g. 12th
observation

CO2_diff = diff(CO2_1990$CO2_ppm, lag = 12)
plot(CO2_diff, type = 'l')
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Differenced acf and pacf
par(mfrow = c(1, 2))
acf(CO2_diff, na.action = na.pass)
pacf(CO2_diff, na.action = na.pass)
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Fit an ARIMA model with a seasonal difference
CO2_1990_ts = ts(CO2_1990$CO2_ppm, frequency = 12,

start =c(1990, 1))
Arima(CO2_1990_ts, order = c(1, 0, 0),

seasonal = c(0, 1, 0),
include.drift = TRUE)

## Series: CO2_1990_ts
## ARIMA(1,0,0)(0,1,0)[12] with drift
##
## Coefficients:
## ar1 drift
## 0.8129 0.1588
## s.e. 0.0325 0.0107
##
## sigma^2 = 0.1943: log likelihood = -185.12
## AIC=376.23 AICc=376.31 BIC=387.5
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Forecasts from seasonally differenced series
s_model_2 = Arima(CO2_1990_ts, order = c(1, 0, 0),

seasonal = c(0, 1, 0), include.drift = TRUE)
plot(forecast(s_model_2, h = 24))

Forecasts from ARIMA(1,0,0)(0,1,0)[12] with drift
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▶ Pretty good. Might be able to do better with some richer models
12 / 27



A full seasonal arima model

▶ We previously met the ARIMA specification where:

diffd(yt) = constant + AR terms + MA terms + error

▶ We can extend this to include seasonal differencing and seasonal AR and MA terms
to create a seasonal ARIMA or sARIMA model

▶ For example:
yt − yt−12 = α + βyt−1 + γyt−12 + ϵt

▶ This is a sARIMA(1, 0, 0)(1, 1, 0)12 model
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Fitting sARIMA models in forecast

auto.arima(CO2_1990_ts)

## Series: CO2_1990_ts
## ARIMA(0,1,1)(1,1,2)[12]
##
## Coefficients:
## ma1 sar1 sma1 sma2
## -0.3888 -0.7684 -0.1020 -0.6482
## s.e. 0.0582 0.4837 0.4891 0.4246
##
## sigma^2 = 0.1137: log likelihood = -103.27
## AIC=216.55 AICc=216.74 BIC=235.31
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Plotting forecasts
s_model_3 = auto.arima(CO2_1990_ts)
plot(forecast(s_model_3, h = 24))

Forecasts from ARIMA(0,1,1)(1,1,2)[12]
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A simple sARIMA model with JAGS
model_code = '
model
{

# Likelihood
for (t in (s+1):T) {

y[t] ~ dnorm(mu[t], sigmaˆ-2)
mu[t] <- alpha + beta * y[t-1] + gamma * y[t-s]

}

# Priors
alpha ~ dnorm(0, 10ˆ-2)
beta ~ dnorm(0, 10ˆ-2)
gamma ~ dnorm(0, 10ˆ-2)
sigma ~ dunif(0, 100)

}
'
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Fitting a sARIMA(1, 0, 0)(1, 0, 0)12 model in JAGS
s_model_4 = jags(data = list(y = CO2_ts, s = 12,

T = length(CO2_ts)),
parameters.to.save = c('alpha', 'beta',

'gamma', 'sigma'),
model.file=textConnection(model_code))

print(s_model_4)

## Inference for Bugs model at "4", fit using jags,
## 3 chains, each with 2000 iterations (first 1000 discarded)
## n.sims = 3000 iterations saved
## mu.vect sd.vect 2.5% 25% 50% 75% 97.5% Rhat n.eff
## alpha -6.465 0.859 -8.202 -7.014 -6.472 -5.875 -4.763 1.003 790
## beta 0.189 0.024 0.140 0.173 0.188 0.204 0.235 1.001 3000
## gamma 0.833 0.024 0.785 0.816 0.833 0.849 0.882 1.001 3000
## sigma 0.599 0.023 0.554 0.583 0.598 0.614 0.645 1.001 2800
## deviance 571.580 2.810 568.152 569.520 570.870 573.004 578.764 1.002 1800
##
## For each parameter, n.eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor (at convergence, Rhat=1).
##
## DIC info (using the rule, pD = var(deviance)/2)
## pD = 3.9 and DIC = 575.5
## DIC is an estimate of expected predictive error (lower deviance is better).
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Multiple seasonality

▶ Very occasionally you come across multiple seasonality models

▶ For example you might have hourly data over several months with both hourly and
monthly seasonality

▶ forecast has a special function for creating multiple series time series: msts
x = msts(taylor, seasonal.periods=c(48,336),

start=2000+22/52)

▶ The above is half-hourly data so has period 48 half-hours and 336 hours, i.e. weekly
(336/48 = 7)

▶ forecast has some special functions (notably tbats) for modelling multi
seasonality data
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Frequency estimation
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Methods for estimating frequencies

▶ The most common way to estimate the frequencies in a time series is to decompose
it in a Fourier Series

▶ We write:

yt = α +
K∑

k=1
[βk sin(2πtfk) + γk cos(2πtfk)] + ϵt

▶ Each one of the terms inside the sum is called a harmonic. We decompose the
series into a sum of sine and cosine waves rather than with AR and MA components

▶ Each sine/cosine pair has its own frequency fk . If the corresponding coefficients βk
and γk are large we might believe this frequency is important
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Estimating frequencies via a Fourier model

▶ It’s certainly possible to fit the model in the previous slide in JAGS, as it’s just a
linear regression model with clever explanatory variables

▶ However, it can be quite slow to fit and, if the number of frequencies K is high, or
the frequencies are close together, it can struggle to converge

▶ More commonly, people repeatedly fit the simpler model:

yt = α + β sin(2πtfk) + γ cos(2πtfk) + ϵt

for lots of different values of fk . Then calculate the power spectrum as
P(fk) = β2+γ2

2 . Large values of the power spectrum indicate important frequencies

▶ It’s much faster to do this outside of JAGS, using other methods, but we will stick
to JAGS

21 / 27



JAGS code for a Fourier model
model_code = '
model
{

# Likelihood
for (t in 1:T) {

y[t] ~ dnorm(mu[t], sigmaˆ-2)
mu[t] <- alpha + beta * cos(2*pi*t*f_k) +

gamma * sin(2*pi*t*f_k )
}
P = (betaˆ2 + gammaˆ2) / 2

# Priors
alpha ~ dnorm(0, 10ˆ-2)
beta ~ dnorm(0, 10ˆ-2)
gamma ~ dnorm(0, 10ˆ-2)
sigma ~ dunif(0, 100)

}
'
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Example: the Lynx data
lynx = read.csv('../../data/lynx.csv')
plot(lynx, type = 'l')
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Code to run the JAGS model repeatedly
periods = 5:40
K = length(periods)
f = 1/periods
Power = rep(NA,K)

for (k in 1:K) {
curr_model_data = list(y = as.vector(lynx[,2]),

T = nrow(lynx),
f_k = f[k],
pi = pi)

model_run = jags(data = curr_model_data,
parameters.to.save = "P",
model.file=textConnection(model_code))

Power[k] = mean(model_run$BUGSoutput$sims.list$P)
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Plotting the periodogram
par(mfrow = c(2, 1))
plot(lynx, type = 'l')
plot(f, Power, type='l')
axis(side = 3, at = f, labels = periods)
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Bayesian vs traditional frequency analysis

▶ For quick and dirty analysis, there is no need to run the full Bayesian model, the R
function periodogram in the TSA package will do the job, or findfrequency in
forecast which is even simpler

▶ However, the big advantage (as always with Bayes) is that we can also plot the
uncertainty in the periodogram, or combine the Fourier model with other modelling
ideas (e.g. ARIMA)

▶ There are much fancier versions of frequency models out there (e.g. Wavelets, or
frequency selection models) which can also be fitted in JAGS but require a bit more
time and effort

▶ These Fourier models work for continuous time series too
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Summary

▶ We now know how to fit models for seasonal data via seasonal factors, seasonal
differencing, and sARIMA models

▶ We can fit these using forecast or JAGS
▶ We’ve seen a basic Fourier model for estimating frequencies via the Bayesian

periodogram
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