
Class 1: Modelling with seasonality and the frequency domain

Andrew Parnell
andrew.parnell@mu.ie

https://andrewcparnell.github.io/TSDA/

PRESS RECORD

1 / 27

https://andrewcparnell.github.io/TSDA/

Learning outcomes

▶ Understand how to fit seasonal models in forecast and JAGS
▶ Understand seasonal differencing and sARIMA models
▶ Know the difference between time and frequency domain models and be able to

implement a basic Fourier model

2 / 27

Seasonal time series

▶ So far we haven’t covered how to deal with data that are seasonal in nature

▶ These data generally fall into two categories:
1. Data where we know the frequency or frequencies (e.g. monthly data on a yearly cycle,

frequency = 12)
2. Data where we want to estimate the frequencies (e.g. climate time series, animal

populations, etc)

▶ The former are easier, and there are many techniques for inducing seasonal
behaviour

▶ The latter are much more interesting. The ACF and PACF can help, but we can
usually do much better by creating a power spectrum

3 / 27

An example seasonal series
CO2 = read.csv(file = '../../data/CO2.csv',

na.strings = -99.99)
CO2_1990 = CO2[CO2$year >= 1990,]
with(CO2_1990, plot(1:nrow(CO2_1990), CO2_ppm, type = 'l',

ylab = 'CO2 (parts per million)',
xlab = 'Year', las = 1))

0 50 100 150 200 250 300

350

360

370

380

390

400

410

Year

C
O

2
(p

ar
ts

 p
er

 m
ill

io
n)

4 / 27

ACF and PACF
par(mfrow = c(1, 2))
acf(CO2_1990$CO2_ppm)
pacf(CO2_1990$CO2_ppm)

0 5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Series CO2_1990$CO2_ppm

5 10 15 20 25

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
Lag

P
ar

tia
l A

C
F

Series CO2_1990$CO2_ppm

5 / 27

Seasonal time series 1: including seasonality as a covariate

▶ The simplest way is to include month as a covariate in a regression type model
CO2_1990$mfac = model.matrix(~ as.factor(CO2_1990$month) - 1)
colnames(CO2_1990$mfac) = month.abb
lm(CO2_ppm ~ year + mfac - 1, data = CO2_1990)

##
Call:
lm(formula = CO2_ppm ~ year + mfac - 1, data = CO2_1990)
##
Coefficients:
year mfacJan mfacFeb mfacMar mfacApr mfacMay mfacJun
1.936 -3502.265 -3501.467 -3500.562 -3499.231 -3498.793 -3499.453
mfacJul mfacAug mfacSep mfacOct mfacNov mfacDec
-3501.077 -3503.160 -3504.667 -3504.467 -3503.029 -3501.590

6 / 27

Forecasts
CO2_ts = ts(CO2_1990$CO2_ppm, frequency = 12,

start = c(1990, 1))
s_model_1 = tslm(CO2_ts ~ trend + season)
plot(forecast(s_model_1, h = 24))

Forecasts from Linear regression model

1990 1995 2000 2005 2010 2015 2020

35
0

37
0

39
0

41
0

7 / 27

What is the time series model doing here?

▶ This is just a regression model, so that:

yt = βyeart + γ1Jant + γ2Febt + γ3Mart + . . . + γ12Dect + ϵt

▶ You can do this using lm or using forecast’s special function for linear regression
forecasting tslm

▶ The tslm function is clever because it can automatically create the seasonal
indicator variables

▶ (Remember that when dealing with indicator variables you have to drop one factor
level for the model to fit if you want to include an intercept)

8 / 27

Seasonal time series 2: seasonal differencing
▶ We have already met methods which difference the data (possibly multiple times)

at lag 1

▶ We can alternatively create a seasonal difference by differencing every e.g. 12th
observation

CO2_diff = diff(CO2_1990$CO2_ppm, lag = 12)
plot(CO2_diff, type = 'l')

0 50 100 150 200 250 300

1
2

3
4

Index

C
O

2_
di

ff

9 / 27

Differenced acf and pacf
par(mfrow = c(1, 2))
acf(CO2_diff, na.action = na.pass)
pacf(CO2_diff, na.action = na.pass)

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Series CO2_diff

5 10 15 20

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
Lag

P
ar

tia
l A

C
F

Series CO2_diff

10 / 27

Fit an ARIMA model with a seasonal difference
CO2_1990_ts = ts(CO2_1990$CO2_ppm, frequency = 12,

start =c(1990, 1))
Arima(CO2_1990_ts, order = c(1, 0, 0),

seasonal = c(0, 1, 0),
include.drift = TRUE)

Series: CO2_1990_ts
ARIMA(1,0,0)(0,1,0)[12] with drift
##
Coefficients:
ar1 drift
0.8129 0.1588
s.e. 0.0325 0.0107
##
sigma^2 = 0.1943: log likelihood = -185.12
AIC=376.23 AICc=376.31 BIC=387.5

11 / 27

Forecasts from seasonally differenced series
s_model_2 = Arima(CO2_1990_ts, order = c(1, 0, 0),

seasonal = c(0, 1, 0), include.drift = TRUE)
plot(forecast(s_model_2, h = 24))

Forecasts from ARIMA(1,0,0)(0,1,0)[12] with drift

1990 1995 2000 2005 2010 2015 2020

35
0

36
0

37
0

38
0

39
0

40
0

41
0

▶ Pretty good. Might be able to do better with some richer models
12 / 27

A full seasonal arima model

▶ We previously met the ARIMA specification where:

diffd(yt) = constant + AR terms + MA terms + error

▶ We can extend this to include seasonal differencing and seasonal AR and MA terms
to create a seasonal ARIMA or sARIMA model

▶ For example:
yt − yt−12 = α + βyt−1 + γyt−12 + ϵt

▶ This is a sARIMA(1, 0, 0)(1, 1, 0)12 model

13 / 27

Fitting sARIMA models in forecast

auto.arima(CO2_1990_ts)

Series: CO2_1990_ts
ARIMA(0,1,1)(1,1,2)[12]
##
Coefficients:
ma1 sar1 sma1 sma2
-0.3888 -0.7684 -0.1020 -0.6482
s.e. 0.0582 0.4837 0.4891 0.4246
##
sigma^2 = 0.1137: log likelihood = -103.27
AIC=216.55 AICc=216.74 BIC=235.31

14 / 27

Plotting forecasts
s_model_3 = auto.arima(CO2_1990_ts)
plot(forecast(s_model_3, h = 24))

Forecasts from ARIMA(0,1,1)(1,1,2)[12]

1990 1995 2000 2005 2010 2015 2020

35
0

36
0

37
0

38
0

39
0

40
0

41
0

15 / 27

A simple sARIMA model with JAGS
model_code = '
model
{

Likelihood
for (t in (s+1):T) {

y[t] ~ dnorm(mu[t], sigmaˆ-2)
mu[t] <- alpha + beta * y[t-1] + gamma * y[t-s]

}

Priors
alpha ~ dnorm(0, 10ˆ-2)
beta ~ dnorm(0, 10ˆ-2)
gamma ~ dnorm(0, 10ˆ-2)
sigma ~ dunif(0, 100)

}
'

16 / 27

Fitting a sARIMA(1, 0, 0)(1, 0, 0)12 model in JAGS
s_model_4 = jags(data = list(y = CO2_ts, s = 12,

T = length(CO2_ts)),
parameters.to.save = c('alpha', 'beta',

'gamma', 'sigma'),
model.file=textConnection(model_code))

print(s_model_4)

Inference for Bugs model at "4", fit using jags,
3 chains, each with 2000 iterations (first 1000 discarded)
n.sims = 3000 iterations saved
mu.vect sd.vect 2.5% 25% 50% 75% 97.5% Rhat n.eff
alpha -6.465 0.859 -8.202 -7.014 -6.472 -5.875 -4.763 1.003 790
beta 0.189 0.024 0.140 0.173 0.188 0.204 0.235 1.001 3000
gamma 0.833 0.024 0.785 0.816 0.833 0.849 0.882 1.001 3000
sigma 0.599 0.023 0.554 0.583 0.598 0.614 0.645 1.001 2800
deviance 571.580 2.810 568.152 569.520 570.870 573.004 578.764 1.002 1800
##
For each parameter, n.eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor (at convergence, Rhat=1).
##
DIC info (using the rule, pD = var(deviance)/2)
pD = 3.9 and DIC = 575.5
DIC is an estimate of expected predictive error (lower deviance is better).

17 / 27

Multiple seasonality

▶ Very occasionally you come across multiple seasonality models

▶ For example you might have hourly data over several months with both hourly and
monthly seasonality

▶ forecast has a special function for creating multiple series time series: msts
x = msts(taylor, seasonal.periods=c(48,336),

start=2000+22/52)

▶ The above is half-hourly data so has period 48 half-hours and 336 hours, i.e. weekly
(336/48 = 7)

▶ forecast has some special functions (notably tbats) for modelling multi
seasonality data

18 / 27

Frequency estimation

19 / 27

Methods for estimating frequencies

▶ The most common way to estimate the frequencies in a time series is to decompose
it in a Fourier Series

▶ We write:

yt = α +
K∑

k=1
[βk sin(2πtfk) + γk cos(2πtfk)] + ϵt

▶ Each one of the terms inside the sum is called a harmonic. We decompose the
series into a sum of sine and cosine waves rather than with AR and MA components

▶ Each sine/cosine pair has its own frequency fk . If the corresponding coefficients βk
and γk are large we might believe this frequency is important

20 / 27

Estimating frequencies via a Fourier model

▶ It’s certainly possible to fit the model in the previous slide in JAGS, as it’s just a
linear regression model with clever explanatory variables

▶ However, it can be quite slow to fit and, if the number of frequencies K is high, or
the frequencies are close together, it can struggle to converge

▶ More commonly, people repeatedly fit the simpler model:

yt = α + β sin(2πtfk) + γ cos(2πtfk) + ϵt

for lots of different values of fk . Then calculate the power spectrum as
P(fk) = β2+γ2

2 . Large values of the power spectrum indicate important frequencies

▶ It’s much faster to do this outside of JAGS, using other methods, but we will stick
to JAGS

21 / 27

JAGS code for a Fourier model
model_code = '
model
{

Likelihood
for (t in 1:T) {

y[t] ~ dnorm(mu[t], sigmaˆ-2)
mu[t] <- alpha + beta * cos(2*pi*t*f_k) +

gamma * sin(2*pi*t*f_k)
}
P = (betaˆ2 + gammaˆ2) / 2

Priors
alpha ~ dnorm(0, 10ˆ-2)
beta ~ dnorm(0, 10ˆ-2)
gamma ~ dnorm(0, 10ˆ-2)
sigma ~ dunif(0, 100)

}
'

22 / 27

Example: the Lynx data
lynx = read.csv('../../data/lynx.csv')
plot(lynx, type = 'l')

1820 1840 1860 1880 1900 1920

0
10

00
30

00
50

00
70

00

year

nu
m

be
r

23 / 27

Code to run the JAGS model repeatedly
periods = 5:40
K = length(periods)
f = 1/periods
Power = rep(NA,K)

for (k in 1:K) {
curr_model_data = list(y = as.vector(lynx[,2]),

T = nrow(lynx),
f_k = f[k],
pi = pi)

model_run = jags(data = curr_model_data,
parameters.to.save = "P",
model.file=textConnection(model_code))

Power[k] = mean(model_run$BUGSoutput$sims.list$P)
} 24 / 27

Plotting the periodogram
par(mfrow = c(2, 1))
plot(lynx, type = 'l')
plot(f, Power, type='l')
axis(side = 3, at = f, labels = periods)

1820 1840 1860 1880 1900 1920

0

year

nu
m

be
r

0.05 0.10 0.15 0.20

0

f

P
ow

er

40 31 25 21 18 15 13 11 10 9 8 7 6 5

25 / 27

Bayesian vs traditional frequency analysis

▶ For quick and dirty analysis, there is no need to run the full Bayesian model, the R
function periodogram in the TSA package will do the job, or findfrequency in
forecast which is even simpler

▶ However, the big advantage (as always with Bayes) is that we can also plot the
uncertainty in the periodogram, or combine the Fourier model with other modelling
ideas (e.g. ARIMA)

▶ There are much fancier versions of frequency models out there (e.g. Wavelets, or
frequency selection models) which can also be fitted in JAGS but require a bit more
time and effort

▶ These Fourier models work for continuous time series too

26 / 27

Summary

▶ We now know how to fit models for seasonal data via seasonal factors, seasonal
differencing, and sARIMA models

▶ We can fit these using forecast or JAGS
▶ We’ve seen a basic Fourier model for estimating frequencies via the Bayesian

periodogram

27 / 27

	Frequency estimation

