
Practical 2 - Using R, JAGS and Stan for fitting GLMs
Andrew Parnell

Introduction

Welcome to Practical 2, an introduction to using R, JAGS and Stan for fitting Generalised Linear Models
(GLMs). In this practical we’ll:

• Fit some basic regression models
• Have a go at extracting and manipulating the output
• Fit some basic GLMs

Throughout this document you will see code in gray boxes. You should try to understand this code, and you
can usually copy it directly from this document into your R script window. At various points you will see a
horizontal line in the text which indicates a question you should try to answer, like this:

Exercise X
What words does the following command print to the console?
print("Hello World")

The two main documents I use when writing Stan/JAGS code are the manuals:

• The JAGS manual contains lots of useful about the function/distribution names, etc, but not many
actual examples. If you need examples, Stack Overflow and Google are your friend.

• The Stan language manual by contrast contains loads of examples and is a great source of inspiration
for some of the many things that Stan can do. If you get stuck on Stan code, head here first before you
start Googling.

Here is a quick warm-up exercise:

Exercise 1

1. Load in the earnings data using read.csv:
2. Use lm to perform a linear regression with log(earnings) as the response and height in cm as the

explanatory variable
3. Have a look at the fit of the model (R-squared, significance, etc)
4. Create a plot of the fitted values (x - axis) vs residuals

An introduction to JAGS

The first thing to know about JAGS is that it is a separate language from R which has its own code and
structure. It is unlike Stan (which is an R package) in that JAGS is separate software that needs to be
installed by itself. Hopefully you already did this when going through the pre-requisites.

To fit a model in JAGS we use this procedure:

1. Load up an R package. We will use R2Jags but there are others
2. Write some JAGS code and store it as a character object in R

1

https://sourceforge.net/projects/mcmc-jags/files/Manuals/4.x/
http://mc-stan.org/documentation/


3. Call the jags function, where we additionally provide data, parameters to watch, and (optionally)
initial values and other algorithm details

4. Store the output in another R object and (assuming the model ran!) print, plot, or conduct further
manipulation of the output

Here’s a standard workflow. We’re going to fit a simple linear regression using the earnings data as in the
initial exercise above. We’re then going to plot the output. I suggest first just copying and pasting this code
to check that it works, then go back through the details line-by-line to understand what’s happening.

First load in the data:
dat = read.csv('https://raw.githubusercontent.com/andrewcparnell/bhm_course/master/data/earnings.csv')

Now load in the package:
library(R2jags)

Type in our JAGS code and store it in an object. The code is as explained in Class 1.
jags_code = '
model{

# Likelihood
for(i in 1:N) {

y[i] ~ dnorm(intercept + slope * x[i],
residual_sd^-2)

}
# Priors
intercept ~ dnorm(0, 100^-2)
slope ~ dnorm(0, 100^-2)
residual_sd ~ dunif(0, 100)

}
'

Run the code by calling jags:
jags_run = jags(data = list(N = nrow(dat),

y = log(dat$earn),
x = dat$height_cm),

parameters.to.save = c('intercept',
'slope',
'residual_sd'),

model.file = textConnection(jags_code))

Above I am giving R a list of data which matches the objects in the jags_code, and I’m also telling it which
parameters I am interested in via parameters.to.save. If you don’t provide a specific parameter here, JAGS
will not store it in the output object. The textConnection function is used to tell JAGS that the model
code is stored in an R object.

Once run we can use the print or plot commands:
print(jags_run)

## Inference for Bugs model at "4", fit using jags,
## 3 chains, each with 2000 iterations (first 1000 discarded)
## n.sims = 3000 iterations saved
## mu.vect sd.vect 2.5% 25% 50% 75% 97.5%
## intercept 5.891 0.493 4.905 5.563 5.892 6.227 6.844
## residual_sd 0.908 0.019 0.872 0.894 0.907 0.920 0.946
## slope 0.023 0.003 0.017 0.021 0.023 0.024 0.028
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## deviance 2798.440 2.442 2795.752 2796.698 2797.743 2799.503 2804.647
## Rhat n.eff
## intercept 1.001 2100
## residual_sd 1.001 2900
## slope 1.001 3000
## deviance 1.001 3000
##
## For each parameter, n.eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor (at convergence, Rhat=1).
##
## DIC info (using the rule, pD = var(deviance)/2)
## pD = 3.0 and DIC = 2801.4
## DIC is an estimate of expected predictive error (lower deviance is better).

The important things to look at here are the estimated posterior means and standard deviations, the quantiles,
and also the Rhat values. You can get a slightly useless plot with:
plot(jags_run)
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Exercise 2

Once you are happy that the above runs for you, try the following:

1. Try changing the x variable in the data list from height_cm to height. How does the model change?
2. Try changing some of the prior distributions in the JAGS code. What happens if you make the prior

standard deviations, or the residual_sd upper limit very small?
3. Try removing one or more of the parameters given in the parameters.to.save argument of the JAGS
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call. What happens to the resulting print/plot commands? Do any of the values change? (they
shouldn’t!)

Manipulating output in JAGS

The object created from the jags call is a huge list with lots of things in it, most of them useless. A good
command to explore the structure of a list is str:
str(jags_run)

There are two useful objects to extract out of the model. The first is the list of all the parameter values. You
can get this with:
pars = jags_run$BUGSoutput$sims.list
str(pars)

## List of 4
## $ deviance : num [1:3000, 1] 2797 2799 2798 2796 2799 ...
## $ intercept : num [1:3000, 1] 6.43 6.46 6.18 5.5 5.82 ...
## $ residual_sd: num [1:3000, 1] 0.921 0.895 0.898 0.896 0.943 ...
## $ slope : num [1:3000, 1] 0.0195 0.0191 0.0207 0.0249 0.0231 ...

After this run we can get at, e.g. the first 10 sample values of the intercept parameter with:
pars$intercept[1:10]

## [1] 6.428477 6.456275 6.182989 5.496266 5.822812 5.863535 5.330024
## [8] 5.598134 6.392657 5.831106

From this we can calculate the posterior mean with, e.g. mean(pars$intercept) but we can also get this
more directly with:
par_means = jags_run$BUGSoutput$mean
str(par_means)

## List of 4
## $ deviance : num [1(1d)] 2798
## $ intercept : num [1(1d)] 5.89
## $ residual_sd: num [1(1d)] 0.908
## $ slope : num [1(1d)] 0.0226

The other things you might want to get out are also stored in the BUGSoutput bit:
str(jags_run$BUGSoutput)

Exercise 3

1. See if you can extract the posterior medians. What is the command?
2. See if you can extract the posterior 95% confidence interval for a given parameter (hint: look in

$summary)
3. Try creating some plots of the output, e.g. histograms of the posterior parameter values (hint: use the

pars object created above)
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An introduction to Stan

If you can fit models in JAGS then it’s pretty easy to move them over to Stan. The structure of the workflow
is very similar, as are the commands. Stan code tends to be slightly longer as you have to declare all of the
data and parameters, and this has its disadvantages (longer code), and advantages (easier to follow).

When you load up stan, it’s best not just to call the package, but also to run two additional lines:
library(rstan)
rstan_options(auto_write = TRUE)
options(mc.cores = parallel::detectCores())

These two lines allow Stan to run in parallel on a multi-core machine which can really speed up workflow.
We now specify our model code:
stan_code = '
data {

int<lower=0> N;
vector[N] x;
vector[N] y;

}
parameters {

real intercept;
real slope;
real<lower=0> residual_sd;

}
model {

y ~ normal(intercept + slope * x, residual_sd);
}
'

It’s a good idea to compare and contrast the code between JAGS and Stan. The key differences are:

1. Stan has different blocks of code. Here they are data, parameters, and model. There are others we
will come to later

2. Stan requires you to specify the dimension of all these values. By contrast JAGS guesses the dimensions
for you

3. Stan doesn’t require you to put prior distributions on all the parameters, JAGS does. Stan thus assumes
flat prior distributions for all parameters by default. It’s much better practice to always put prior
distributions in your model code

4. Stan parameterises the normal distribution as (mean, standard deviation). By contrast, JAGS uses
(mean, precision). Remember precision is the reciprocal of the variance, so precision = 1 / sdˆ2

5. Stan ends each line with a semi-colon. JAGS does not
6. Stan uses = to assign variables, JAGS uses <-

Finally we run the model with:
stan_run = stan(data = list(N = nrow(dat),

y = log(dat$earn),
x = dat$height_cm),

model_code = stan_code)

In contrast to JAGS, we do not need to specify the parameters to watch. Stan watches all of them by default.
We also don’t need a textConnection command to provide the stan function with the stan code. The data
call is identical to JAGS.

I often find with Stan that I get lots of warnings when I run a model, especially with more complicated
models (which we haven’t met yet). Most of them tend to be ignorable and are unhelpful. Usually Stan gives
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you a count of how many ‘bad things’ happened in each chain. However, there doesn’t seem to be much
guidance on what to change, if anything, in response. If you start to see lots of warnings in your Stan output,
let me know!

Just like JAGS, we can print or plot the output. This is also a pretty useless plot:
plot(stan_run)

## ci_level: 0.8 (80% intervals)

## outer_level: 0.95 (95% intervals)
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Exercise 4

Let’s do the same exercises again for Stan:

1. Try changing the x variable in the data list to height. How does the model change?

2. Try adding in some prior distributions to the Stan code. For example, add intercept ~ normal(0,
100);. Again experiment with making these ranges small or large

Manipulating output in Stan

Stan by default saves all the parameters, but they are not easily accessible directly from the stan_run object
we just created. Instead there is a special function called extract to get at the posterior samples.
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pars = extract(stan_run)
str(pars)

## List of 4
## $ intercept : num [1:4000(1d)] 5.2 6.3 5.85 5.89 6.17 ...
## ..- attr(*, "dimnames")=List of 1
## .. ..$ iterations: NULL
## $ slope : num [1:4000(1d)] 0.0265 0.0201 0.0229 0.0226 0.0209 ...
## ..- attr(*, "dimnames")=List of 1
## .. ..$ iterations: NULL
## $ residual_sd: num [1:4000(1d)] 0.876 0.914 0.915 0.922 0.935 ...
## ..- attr(*, "dimnames")=List of 1
## .. ..$ iterations: NULL
## $ lp__ : num [1:4000(1d)] -427 -425 -425 -425 -426 ...
## ..- attr(*, "dimnames")=List of 1
## .. ..$ iterations: NULL

If we want the first 10 samples of the intercept we can run:
pars$intercept[1:10]

## [1] 5.200368 6.295398 5.846214 5.893165 6.170535 6.953671 6.745316
## [8] 5.344965 5.105727 5.730132

Alternatively if you want to get at the summary statistics you can run:
pars_summ = summary(stan_run)$summary
pars_summ['intercept','mean']

## [1] 5.892869

In addition, stan has some useful plotting commands, e.g.
stan_dens(stan_run)
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intercept slope residual_sd

5 6 7 0.015 0.020 0.025 0.030 0.84 0.88 0.92 0.96

You can find a bigger list with ?stan_plot

Exercise 5

As with JAGS:

1. See if you can extract the posterior medians. What is the command?
2. See if you can extract the posterior 95% confidence interval for a given parameter
3. Try creating some plots of the output, e.g. histograms of the posterior parameter values

Fitting GLMs

Once you have the basic workflow in place, and the ability to manipulate output, the only hard thing that
remains is the ability to write your own JAGS/Stan code to fit the model you want.

Recall that for a generalised linear model (GLM) we don’t have a normally distributed likelihood, instead
we have a probability distribution that matches the data (e.g. binomial for restricted counts, Poisson for
unrestricted) and a link function which transforms the key parameter (usually the mean parameter) from its
restricted range into something we can use in a linear regression type model.

Here is some JAGS code to fit a Binomial-logit model to the Swiss willow tit data:
swt = read.csv('https://raw.githubusercontent.com/andrewcparnell/bhm_course/master/data/swt.csv')
jags_code = '
model{
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# Likelihood
for(i in 1:N) {

y[i] ~ dbin(p[i], 1)
logit(p[i]) <- alpha + beta*x[i]

}
# Priors
alpha ~ dnorm(0, 20^-2)
beta ~ dnorm(0, 20^-2)

}
'
jags_run = jags(data = list(N = nrow(swt),

y = swt$rep.1,
x = swt$forest),

parameters.to.save = c('alpha',
'beta'),

model.file = textConnection(jags_code))

Most of the above steps you have already seen. The key things to note are:

• In the jags code we have y[i] ~ dbin(p[i], 1) to represent the binomial likelihood with probability
pi and number of trials set to 1. (If you’ve forgotten the details of the binomial model please ask!)

• The link function here is the logit. Both JAGS and Stan are slightly different from other programming
languages in that you can write the link function on the left hand side. In most programming languages
you would have to write something like p[i] <- logit_inverse(alpha + beta*x[i])

• I’m using alpha and beta here, rather than slope and intercept

Once run, you can manipulate the object in any way you like. Let’s create a simple plot of the data with the
fitted line going through it. A useful package to call here is the boot package which contains the logit and
inv.logit functions. You can try them out with:
library(boot)
logit(0.4) # Convert from 0-to-1 space to -Infinity to +Infinity

## [1] -0.4054651
inv.logit(3) # ... and the opposite

## [1] 0.9525741

To create the plot we will first get the posterior means of the slopes:
post_means = jags_run$BUGSoutput$mean
alpha_mean = post_means$alpha
beta_mean = post_means$beta

Now plot the data and add in the predicted values of the probability by creating new explanatory variables
on a grid:
par(mar=c(3,3,2,1), mgp=c(2,.7,0), tck=-.01, las=1) # Prettify plots a bit
with(swt, plot(forest, rep.1,

xlab = 'Forest cover (%)',
ylab = 'Probability of finding swt'))

forest_grid = pretty(swt$forest, n = 100)
lines(forest_grid, inv.logit(alpha_mean + beta_mean * forest_grid), col = 'red')

## Warning in beta_mean * forest_grid: Recycling array of length 1 in array-vector arithmetic is deprecated.
## Use c() or as.vector() instead.

## Warning in alpha_mean + beta_mean * forest_grid: Recycling array of length 1 in array-vector arithmetic is deprecated.
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## Use c() or as.vector() instead.
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At this point if you’re feeling really brave, you could try and code the above model in Stan without looking
any further down the page. I’d suggest looking in the manual for the binomial_logit function (unfortunately
there aren’t currently any examples in the Stan manual for Binomial-logit regression).

If you’re not so confident (or you’ve finished and want to check), here is the code for a Stan Binomial logit
model.
stan_code = '
data {

int<lower=0> N;
vector[N] x;
int y[N];

}
parameters {

real alpha;
real beta;

} model {
y ~ binomial_logit(1, alpha + beta * x);
alpha ~ normal(0, 10);
beta ~ normal(0, 10);

}
'
stan_run = stan(data = list(N = nrow(swt),

y = swt$rep.1,
x = swt$forest),

model_code = stan_code)
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plot(stan_run)
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The things to note about this code are:

1. I’ve set x to be a vector and y to be an int. This is because x is continuous (it’s our percentage of
forest cover) but y must be a whole number to be a valid binomial random variable. If you try to set y
as a vector too Stan will complain

2. One of the oddities of Stan is that you write vector[N] x but int y[N]. So the [N] appears in different
places for vectors than for integers. I can never remember which way round is correct!

3. The likelihood term here using the function binomial_logit does the two lines that JAGS uses in one
go. It calculates the binomial probability and creates the logit of alpha + beta * x for you.

4. Stan automatically vectorises most things so you don’t need a for loop like JAGS
5. If you don’t give the prior distributions to Stan here you will end up with flat prior distributions on the

parameters. This is bad practice but appears frequently in the Stan manual and examples.

Exercise 6

Pick your favourite so far (either JAGS or Stan) and try these:

1. Change the explanatory variable from forest to elev. Re-create the plots and interpret your findings.
2. Try and adapt the model to include both forest and elev. How do the results change?

Now try and swap programmes and try the above again! Then compare the results of JAGS vs Stan on the
GLM. They should look similar, though the algorithm they use is stochastic so the results won’t be identical.
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Checking and changing the model run

Both JAGS and Stan provide the Rhat value with their default print output. Remember the rule of thumb
is that the model run is satisfactory if all values are less than 1.1. If the Rhat values are above 1.1 then you
have two possibilities:

1. Something about your model is mathematically wrong (often I find that I’m missing something like an
intercept term in my model). You need to look carefully at your model, and perhaps get some help
from a statistician.

2. You need to run the model for longer

If the Rhat values are above 1.1 then the first thing I do is create a trace plot of some of the parameters.
This is the plot of the parameter values at each iteration. You can get it in Stan from:
rstan::traceplot(stan_run)
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It’s a bit more fiddly in JAGS:
coda::traceplot(as.mcmc(jags_run$BUGSoutput$sims.matrix))
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The reason for the stan:: and the coda:: bit is because JAGS and Stan each have a function called
traceplot. You have to specify the package to get the correct one. The traceplots should look like hairy
caterpillars and shouldn’t be wandering around or stuck in a location.

If the traceplots look bad there are five things you can change in a JAGS/Stan run to help. These were all
covered in Class 2 so go back to the slides if you have forgotten. They are:

1. The number of iterations (JAGS/Stan default 2000). This is the first thing to increase
2. The size of the burn-in (JAGS/Stan default 1000). Increase this if it looks like the parameter values

settled after a while but you need to remove an initial chunk
3. The amount of thinning (JAGS/Stan default 1). Increase this if the parameters are wandering around

slowly
4. The starting parameter guesses. By default JAGS and Stan come up with their own, but you can

provide a function which generates good starting values and provides it to JAGS/Stan. We will see an
example of this in one of the later classes. It’s usually only necessary for very complex models that
struggle to start.

5. The number of chains (JAGS default 3, Stan default 4). There’s usually no need to increase this unless
you have a lot of spare processors and want to be really sure of convergence

Here’s an example of Stan code with the iterations/burn-in/thinning values doubled (Stan calls the burn-in
the warmup):
stan_run = stan(data = list(N = nrow(swt),

y = swt$rep.1,
x = swt$forest),

iter = 4000,
warmup = 2000,
thin = 2,
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model_code = stan_code)

and here’s the same example in JAGS
jags_run = jags(data = list(N = nrow(swt),

y = swt$rep.1,
x = swt$forest),

parameters.to.save = c('alpha',
'beta'),

n.iter = 4000,
n.burnin = 2000,
n.thin = 2,
model.file = textConnection(jags_code))

For the vast majority of problems we will cover (up until the last few classes) you shouldn’t need to change
any of the defaults but it is useful to know.

Harder exercises

1. We previously met a Poisson GLM but we didn’t fit it to any data. Try fitting it using to the
whitefly.csv data set using the imm variable as the response and the trt variable as a covariate.
Don’t worry about interpreting the output, just get the model to run and converge.

2. Next see if you can fit the above model in Stan. You’ll need to look up the poisson_log function in
the Stan manual

3. The variable n in this data set is a potential offset. Use the notes on offsets in Class 2 to fit a model
that uses the n variable as an offset. Again, don’t worry about interpretation. Just get the models to
run!
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