
Practical 4 - Advanced hierarchical GLMs
Andrew Parnell

Introduction

In practical 4 we are going to:

• Fit a more complex hierarchical linear model
• Go through a full Bayesian analysis of some models on a new data set
• Perform some model comparison using WAIC with Stan
• Create some plots of the posterior predicted values with uncertainty

We are going to focus on the prostate data set in the data folder. We’re going to use Stan throughout,
though if you’ve stuck to JAGS so far you should try and translate the code into JAGS. Everything in this
tutorial should still run for you.

The prostate data set

The prostate data set can be loaded in and explored with:
prostate = read.csv('https://raw.githubusercontent.com/andrewcparnell/bhm_course/master/data/prostate.csv')
head(prostate)

lcavol lweight age lbph svi lcp gleason pgg45 lpsa
1 -0.5798185 2.769459 50 -1.386294 0 -1.386294 6 0 -0.4307829
2 -0.9942523 3.319626 58 -1.386294 0 -1.386294 6 0 -0.1625189
3 -0.5108256 2.691243 74 -1.386294 0 -1.386294 7 20 -0.1625189
4 -1.2039728 3.282789 58 -1.386294 0 -1.386294 6 0 -0.1625189
5 0.7514161 3.432373 62 -1.386294 0 -1.386294 6 0 0.3715636
6 -1.0498221 3.228826 50 -1.386294 0 -1.386294 6 0 0.7654678
train
1 TRUE
2 TRUE
3 TRUE
4 TRUE
5 TRUE
6 TRUE

The data contain information on 97 men with prostate cancer. The response variable here is lpsa - the log of
the prostate specific antigen. We want to see whether this variable can be predicted from the others. The
other key variables we will use are:

• lcavol, the log cancer volume
• lweight, the log of the weight of the patient
• gleason, the Gleason grade of the cancer (from 6 to 9). A higher value is more serious

Exercise 1

1. Create suitable plots (scatter plots, boxplots, etc) to get a sense of the relationships between these
variables. Which variable(s) seems to be the most predictive?

1

Creating a first model

A first linear regression model I would suggest for these data is:

log(psa) ∼ N(α+ β1lcavoli + β2lweighti + β3gleasoni, σ
2)

Let’s fit it in Stan. Here’s the code with vague priors and no mean correction:
stan_code = '
data {

int<lower=0> N;
vector[N] lpsa;
vector[N] lcavol;
vector[N] lweight;
vector[N] gleason;

}
parameters {

real alpha;
real beta_1;
real beta_2;
real beta_3;
real<lower=0> sigma;

}
model {

lpsa ~ normal(alpha + beta_1 * lcavol + beta_2 * lweight + beta_3 * gleason, sigma);
alpha ~ normal(0, 10);
beta_1 ~ normal(0, 10);
beta_2 ~ normal(0, 10);
beta_3 ~ normal(0, 10);
sigma ~ cauchy(0, 10);

}
'
library(rstan)
rstan_options(auto_write = TRUE)
options(mc.cores = parallel::detectCores())
stan_run = stan(data = list(N = nrow(prostate),

lpsa = prostate$lpsa,
lcavol = prostate$lcavol,
lweight = prostate$lweight,
gleason = prostate$gleason),

model_code = stan_code)

Exercise 2

1. This model isn’t mean corrected. Mean correct it properly either in the stan_code object or in the
data list provided to stan.

2. These are pretty poor priors. Try simulating data from these priors and this likelihood (once you’ve
mean corrected it). Try and come up with your own better priors (pretend you are the data expert
here)

3. Once you have come up with a model that you like, re-fit the model and interpret the output. Which
variables are important?

2

Extracting the WAIC from a Stan model run

If you have a recent version of Stan (hopefully you installed it in the last few days), then you can create
the WAIC value (a superior version of the DIC) but it’s a bit fiddly at resent. You first need to re-run your
model, adding in a generated quantities block which outputs the log likelihood.
stan_code = '
data {

int<lower=0> N;
vector[N] lpsa;
vector[N] lcavol;
vector[N] lweight;
vector[N] gleason;

}
parameters {

real alpha;
real beta_1;
real beta_2;
real beta_3;
real<lower=0> sigma;

}
model {

lpsa ~ normal(alpha + beta_1 * lcavol + beta_2 * lweight + beta_3 * gleason, sigma);
alpha ~ normal(0, 10);
beta_1 ~ normal(0, 10);
beta_2 ~ normal(0, 10);
beta_3 ~ normal(0, 10);
sigma ~ cauchy(0, 10);

}
generated quantities {

vector[N] log_lik;
for(i in 1:N) {

log_lik[i] = normal_log(lpsa[i], alpha + beta_1 * lcavol[i] + beta_2 * lweight[i] + beta_3 * gleason[i], sigma);
}

}
'
library(rstan)
rstan_options(auto_write = TRUE)
options(mc.cores = parallel::detectCores())
stan_run = stan(data = list(N = nrow(prostate),

lpsa = prostate$lpsa,
lcavol = prostate$lcavol,
lweight = prostate$lweight,
gleason = prostate$gleason),

model_code = stan_code)

We can now use the loo package to get the WAIC (with uncertainty!)
library(loo)
log_lik = extract_log_lik(stan_run, parameter_name = 'log_lik')
waic(log_lik)

##
Computed from 4000 by 97 log-likelihood matrix
##

3

Estimate SE
elpd_waic -111.7 6.8
p_waic 4.8 0.8
waic 223.4 13.6

The loo package should be installed as part of rstan but if you find it’s not there you can always run
install.packages('loo'). The extract_log_lik line here gets the log likelihood scores for each iteration
from the stan_run object. The waic command computers the WAIC and the effective number of parameters
(p_waic).

This package is currently quite new and still seems to spit out some odd warnings but generally the results
seem fast and useful, and it gives you uncertainty on the value! Besides the WAIC you can also get an
estimate of the leave-one-out (LOO) cross validation error:
loo(log_lik)

Warning: Relative effective sample sizes ('r_eff' argument) not specified.
For models fit with MCMC, the reported PSIS effective sample sizes and
MCSE estimates will be over-optimistic.

##
Computed from 4000 by 97 log-likelihood matrix
##
Estimate SE
elpd_loo -111.7 6.8
p_loo 4.9 0.8
looic 223.5 13.6

Monte Carlo SE of elpd_loo is 0.0.
##
All Pareto k estimates are good (k < 0.5).
See help('pareto-k-diagnostic') for details.

These two will generally be pretty similar as the WAIC is designed to match the LOO except in the case of
very influential observations. My current view is to stick with the WAIC as most people will be familiar with
this type of measure from using AIC, BIC, DIC, etc.

Extending the model

One of way of extending the model is to have the intercept varying according to Gleason grade. Here is a
model:
stan_code = '
data {

int<lower=0> N;
int<lower=0> N_gleason;
vector[N] lpsa;
vector[N] lcavol;
vector[N] lweight;
int gleason_ind[N];

}
parameters {

vector[N_gleason] alpha;
real beta_1;
real beta_2;
real<lower=0> sigma;

4

real<lower=0> sigma_alpha;
}
model {

for (i in 1:N)
lpsa[i] ~ normal(alpha[gleason_ind[i]] + beta_1 * lcavol[i] + beta_2 * lweight[i], sigma);

for (j in 1:N_gleason) {
alpha[j] ~ normal(0, sigma_alpha);

}
beta_1 ~ normal(0, 10);
beta_2 ~ normal(0, 10);
sigma ~ cauchy(0, 10);
sigma_alpha ~ cauchy(0, 10);

}
'
stan_run = stan(data = list(N = nrow(prostate),

N_gleason = 4,
lpsa = prostate$lpsa,
lcavol = prostate$lcavol,
lweight = prostate$lweight,
gleason_ind = prostate$gleason-5),

model_code = stan_code)

Warning: There were 14 divergent transitions after warmup. Increasing adapt_delta above 0.8 may help. See
http://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup

Warning: Examine the pairs() plot to diagnose sampling problems

Exercise 3

1. Try to calculate the WAIC value for this model (ask if you get stuck with the generated quantities
value)

2. Improve the model with the priors you developed in the previous exercise
3. Think of two or three different ways to expand this model.
4. Try to fit each of the models and keep a note of the WAIC.
5. Find your ‘best’ model and interpret the parameters

Creating posterior predictive distributions in Stan

We can use another generated quantities block to include a sampling statement to generate posterior
predictive distributions. We can do this with:
stan_code = '
data {

int<lower=0> N;
int<lower=0> N_gleason;
vector[N] lpsa;
vector[N] lcavol;
vector[N] lweight;
int gleason_ind[N];

}
parameters {

vector[N_gleason] alpha;

5

real beta_1;
real beta_2;
real<lower=0> sigma;
real<lower=0> sigma_alpha;

}
model {

for (i in 1:N)
lpsa[i] ~ normal(alpha[gleason_ind[i]] + beta_1 * lcavol[i] + beta_2 * lweight[i], sigma);

for (j in 1:N_gleason) {
alpha[j] ~ normal(0, sigma_alpha);

}
beta_1 ~ normal(0, 10);
beta_2 ~ normal(0, 10);
sigma ~ cauchy(0, 10);
sigma_alpha ~ cauchy(0, 10);

}
generated quantities {

vector[N] lpsa_sim;
for (i in 1:N) {

lpsa_sim[i] = normal_rng(alpha[gleason_ind[i]] + beta_1 * lcavol[i] + beta_2 * lweight[i], sigma);
}

}
'
stan_run = stan(data = list(N = nrow(prostate),

N_gleason = 4,
lpsa = prostate$lpsa,
lcavol = prostate$lcavol,
lweight = prostate$lweight,
gleason_ind = prostate$gleason-5),

model_code = stan_code)

Warning: There were 138 divergent transitions after warmup. Increasing adapt_delta above 0.8 may help. See
http://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup

Warning: Examine the pairs() plot to diagnose sampling problems

We can now plot the posterior predictive. Here I’m going to include uncertainty on the values:
lpsa_sim = extract(stan_run, pars = 'lpsa_sim')$lpsa_sim
lpsa_sim_summary = apply(lpsa_sim, 2, 'quantile', probs = c(0.025, 0.5, 0.975))
plot(prostate$lpsa, lpsa_sim_summary[2,],

xlab = 'True lpsa values',
ylab = 'Posterior predicted lpsa values',
ylim = range(lpsa_sim_summary))

for(i in 1:ncol(lpsa_sim_summary)) {
lines(c(prostate$lpsa[i],prostate$lpsa[i]),

c(lpsa_sim_summary[1,i],lpsa_sim_summary[3,i]))
}
abline(a = 0, b = 1, col = 'red')

6

0 1 2 3 4 5

−
1

0
1

2
3

4
5

True lpsa values

P
os

te
rio

r
pr

ed
ic

te
d

lp
sa

 v
al

ue
s

A pretty good fitting model!

Exercise 3

1. Create the posterior predictive for the best model you found above
2. Get the plot with uncertainties like the above. Did it fit the data well?
3. Interpret the parameters and performance of your model.

Congratulations, you have now completed the majority of a Bayesian analysis on these data!

Harder exercises

• Try incorporating some of the other variables in the data set that we have left out. Do they improve
the model fit?

• Pick two or three of the best models that you tried, and run a full 5-fold cross validation. Does the
5-fold CV pick the same best model as the waic and loo function values?

7

	Introduction
	The prostate data set
	Creating a first model
	Extracting the WAIC from a Stan model run
	Extending the model
	Creating posterior predictive distributions in Stan
	Harder exercises

