Class 1: An introduction to Bayesian Hierarchical Modelling

Andrew Parnell andrew.parnell@mu.ie

https://andrewcparnell.github.io/bhm_course

PRESS RECORD

Let's get started

Introduction from Oliver Hooker, PR Statistics

► Tell me:

- who you are,
- where you are from,
- your previous experience in working with R and regression models,
- what you are working on,
- what you want to get out of the course,
- what you are most looking forward to when we can all go outside again.

Timetable for the week

Pre-requisites

How this course works

- This course lives on GitHub, which means anyone can see the slides, code, etc, and make comments on it
- The timetable document (index.html) provides links to all the pdf slides and practicals
- The slides and the practicals are all written in Rmarkdown format, which means you can load them up in Rstudio and see how everything was created
- Let me know if you spot mistakes, as these can be easily updated on the GitHub page
- There is a bhm_course.Rproj R project file from which you should be able to run all the code

Copyright statement

All the non-GitHub materials provided in the Introduction to Bayesian Hierarchical Modelling are copyright of Andrew Parnell.

This means:

- As a user (the student) you have permission (licence) to access the materials to aid and support your individual studies.
- You are not permitted to copy or distribute any materials without the relevant permission
- As faculty we may reserve the right to remove a user in the event of any possible infringement

Course format and other details

- ▶ Lectures will take place in the morning via Zoom, practical classes in the afternoon
- In the practical classes I will go round the room asking people how they are getting on
- If you want to send me a private message use Slack
- Please ask lots of questions, but MUTE YOUR MICROPHONE when not asking them
- Some good books:
 - Data Analysis using Regression and Hierarchical Models by Gelman and Hill
 - Bayesian Data Analysis by Gelman et al

What is a Bayesian hierarchical model?

- A model is just a representation/approximation of the real world, here expressed in equations
- Hierarchical means that the model is built up in *ordered layers* which makes it easier to fit very complex models
- Bayesian means the model involves both a *likelihood* and a *prior* probability distribution (more on this tomorrow)

Thinking hierarchically: example 1

food weight (kg)

More information:

food weight (kg)

Example 2: 8 Schools

We have 8 schools in a region, with a relative performance score (column score) compared to the national average and a standard deviation (sigma) based on 3 repeated visits

school score sigma -3 -1 ## 7 ## 8

If you had to pick an overall score for this region how would you calculate it?
If you had to guess the score of a new measurement for school 1 what value would you use?

Example 3: Earnings data

1192 observations on earnings (in USD) and various measurements about ethnicity, age, height, etc

##		earn	age	eth	height	height_cm	У	х	x_centered
##	1	50000	2	3	74	187.96	10.81978	74	6.932011
##	2	60000	3	3	66	167.64	11.00210	66	-1.067989
##	3	30000	1	3	64	162.56	10.30895	64	-3.067989
##	4	51000	2	3	63	160.02	10.83958	63	-4.067989
##	5	9000	1	3	64	162.56	9.10498	64	-3.067989
##	6	29000	2	3	62	157.48	10.27505	62	-5.067989

Does height affect earnings?

Are there different rates of change for different groups (e.g. age/ethnic groups)?

Example 4: Swiss Willow Tit data

3 replicate measurements on whether Swiss Willow Tits were found with covariates on forest cover and elevation

##		rep.1	rep.2	rep.3	c.2	c.3	elev	forest	dur.1	dur.2	dur.3	length	alt
##	1	0	0	0	0	0	420	3	240	58	73	6.2	Low
##	2	0	0	0	0	0	450	21	160	39	62	5.1	Low
##	3	0	0	0	0	0	1050	32	120	47	74	4.3	Med
##	4	0	0	0	0	0	1110	35	180	44	71	5.4	Med
##	5	0	0	0	0	0	510	2	210	56	73	3.6	Low
##	6	0	0	0	0	0	630	60	150	56	73	6.1	Low

- How do the covariates affect the chance of finding the birds?
- Are these effects linear?
- What do we do with the missing data?

More data sets in the data directory

- The data directory contains a few more data sets which we will play with throughout the week
- The data_descriptions.txt file shows what they contain
- If you have some spare time it's worth loading them in, exploring relationships, and fitting some simple models

- ▶ In hierarchical models we avoid fitting models separately as much as possible
- By fitting models together we **borrow strength** from the different groups in the data and reduce uncertainty
- Bayesian models allow us to incorporate all the available data into providing information on the question we want to answer