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Learning outcomes

I Know a few more probability distributions
I Understand how likelihood works
I Know how to choose a probability distribution for some data
I Be able to create and interpret output from a likelihood estimation
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Likelihood and inference

I A big chunk of statistics involves fitting probability distributions to data
I The definition of data can be very broad
I We have to choose a suitable probability distribution
I We have to choose a fitting method
I We obtain parameter estimates of these probability distributions

We use these parameter estimates to make numerical predictions about the future
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What is a probability distribution?

I A probability distribution is just a mathematical tool to predict the behaviour of
random data

I A probability distribution can come in (at least) three different forms:
1. As a picture, usually represented in a bar chart or a line
2. As an equation, which enables us to calculate probabilities (or probability densities)
3. As a set of samples (similar to a data set) which follow the shape of the probability

distribution
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Example: the normal distribution - picture
x = seq(from = -3, to = 3, by = 0.1)
plot(x, dnorm(x, mean = 0, sd = 1), type = 'l')
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Example: the normal distribution - equation

f (x ;µ, σ) = 1√
2πσ2

e− (x−µ)2

2σ2

I Here µ (the mean) and σ (the standard deviation) are the parameters of the normal
distribution

I If someone gives us some data and says to ‘fit’ a normal distribution they mean to
estimate µ and σ for their data

I This distribution is continuous which means that the values of x can be real
numbers

I The function in R dnorm just works out the above formula for given values of x , µ,
and σ
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Example: the normal distribution - samples

rnorm(20, mean = 0, sd = 1)

## [1] -1.60925993 0.45530792 -0.86877324
## [4] 0.06227978 1.27665395 1.71348074
## [7] 0.42488129 -0.72467326 -2.18318833
## [10] -0.77322921 -0.12839342 1.17320388
## [13] -0.20902341 -0.69691609 0.22091449
## [16] -0.45185469 -0.72809338 0.69575024
## [19] -1.27334154 0.96896209
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Example 2: the Poisson distribution - picture
x = seq(from = 0, to = 10, by = 1)
barplot(dpois(x, lambda = 1), names.arg = x)
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Example 2: the Poisson distribution - equation

f (x ;λ) = e−λλx

x !

I The only parameter in the Poisson distribution is λ which represents both the mean
and the variance, which have to be equal

I The Poisson is a discrete probability distribution, which means that the data values
have to be integers

I Due to the strange mean = variance relationship, the Poisson distribution rarely
matches real-world situations
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Example 2: the Poisson distribution - samples

rpois(100, lambda = 1)

## [1] 0 3 2 1 0 3 0 3 1 0 1 0 3 3 2 1 0
## [18] 1 1 3 0 0 2 2 2 0 4 0 0 3 2 1 0 2
## [35] 1 0 0 0 0 2 2 2 0 3 2 2 1 0 1 1 0
## [52] 2 1 1 0 2 2 0 0 1 1 2 0 2 1 0 1 0
## [69] 0 0 1 6 2 0 2 1 1 1 0 1 0 3 2 2 0
## [86] 2 1 1 1 1 2 4 1 3 1 1 1 0 2 2
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A few more useful probability distributions

I Binomial. Discrete. Useful when the values have a lower and upper limit. Has two
parameters N and p which determine how the values behave. Mean is Np and
standard deviation

√
Np(1− p). R function is dbinom

I t-distribution. Continuous. Looks like a normal distribution but has fatter tails.
Good for capturing data with outliers. Has three parameters, mean, scale (like
standard deviation), and shape to measure the heavy tailed-ness. R function is dt

I Gamma distribution. Continuous but restricted to positive values only. Has two
parameters shape and rate, which aren’t easily interpretable. R function is dgamma

I Uniform distribution. Continuous but restricted to a lower and upper range. Shape
of graph is completely flat. R function is dunif
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Choosing a probability distribution

I There is always a probability distribution for your data

I When faced with a new set of data, which probability distribution should we
choose?
1. Think about the type of data. Is it discrete or continuous?
2. Think about the range of values. Are there hard upper and lower limits?
3. Think about the likely shape of the distribution. Will there be extreme values?

I Always plot the probability distribution of the data using e.g. hist

I If in doubt, use the normal distribution
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How can we fit a probability distribution to some data?

By fitting a probability distribution to some data we mean estimating the parameters of
that distribution

We will cover three techniques:

I The simple way (method of moments)
I The harder way (likelihood)
I The even harder way (Bayes; later)
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Method of moments

Suppose we have 10 data points and we want to fit a normal distribution:
x = c(-0.23, -0.97, -1.94, -2.08, 2.55,

0.8, -0.03, -0.79, -0.6, 1.75)

The normal distribution has two parameters representing the mean and the standard
deviation, so just calculate these values from the data and set µ̂ = mean(x) and
σ̂ = sd(x):
mean(x); sd(x)

## [1] -0.154

## [1] 1.492077
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Notes on the method of moments

I It’s called the method of moments because the mean and the standard deviation
are known as the moments of a probability distribution

I We write hat on the parameters (e.g. µ̂) to make it clear that these are parameter
estimates and not the true values

I The method gets a little bit fiddlier when the parameters don’t represent the
moments directly. For example with the binomial we’d need to solve a simultaneous
equation

I The method becomes unworkable once we move into situations with more than a
few parameters
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Likelihood

I Main idea: use the probability distribution formula to find how likely each data
point is, and then multiply it all together

I Steps:
1. Guess some values of the parameters
2. For each data point, calculate the probability distribution formula
3. Multiply the lot together to give the likelihood
4. Repeat from 1 with different values of the parameters

We choose the values of the parameters to maximise the likelihood
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Calculating the likelihood in practice

In R, it’s one line!
prod(dnorm(x, mean = 0, sd = 1))

## [1] 4.042974e-09
prod(dnorm(x, mean = 1, sd = 1))

## [1] 5.840029e-12

I The likelihood when the mean is 0 is higher than the likelihood when it is 1,
indicating that these parameter values are better supported by the data
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Logs

I Likelihood values tend to get very small very quickly, so most people instead work
with the log of the likelihood, which is also easier to calculate

I We usually compute the log of the probability distribution and sum these values
(recall the log of the product is the same as the sum of the logs)

log(prod(dnorm(x, mean = 0, sd = 1)))

## [1] -19.32629
sum(dnorm(x, mean = 0, sd = 1, log = TRUE))

## [1] -19.32629

I We thus find the parameter values that maximise the log of the likelihood rather
than the likelihood itself
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Maximising the likelihood

I One way to find the ‘best’ parameters is to try lots and lots of different values and
take the ones that provide the biggest log likelihood. This is very inefficient

I Another way is to use mathematics - we can often maximise the likelihood using
calculus. (We are not going to do this)

I R has a number of very efficient built-in optimisation routines (e.g. nlminb) which
will find the best values for us
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Maximising the likelihood for linear regression

I In linear regression we can also maximise the likelihood
I Suppose we have our data in two variables, called y (response) and x (explanatory)
I We have 3 parameters now: an intercept, a slope, and a residual standard deviation
I Code to calculate the log likelihood would be:

sum(dnorm(y, mean = 3 + 2*x, sd = 1, log = TRUE))
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Checking the model

I We could choose almost any probability distribution and still get estimates of the
parameters

I We would also like to know whether the probability distribution we chose actually
matches the data

I One neat way is a QQ-plot (Quantile-Quantile plot) which compares the quantiles
of the data with the expected quantiles of the fitted probability distribution

I If the probability distribution fits the data well the points should lie on a straight
line
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A QQ-plot
qqnorm(x)
qqline(x)
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How do we estimate the uncertainty in parameters?

I Having the ‘best’ values of the parameters isn’t the whole story
I We only have a limited set of data so we can’t possibly know the true values

exactly. We need to have estimates of uncertainty about the parameters
I With only a small set of data, the parameter uncertainty should be large
I With a larger data set, we should be able to get closer to the true values
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Calculating the uncertainty in the parameters

I There is some mathematical theory which says that the estimated parameters are
normally distributed themselves

I The standard deviation of the estimated parameters depends on the second
derivative of the likelihood. Again, we will leave this to the experts

I R can calculate for us the standard deviation estimates of the parameters
I This means that we can an estimated standard deviation of an estimated standard

deviation!
I The estimated standard deviation is usually called the standard error
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Quantiles of probability distributions

I For the normal distribution we know that 68% of samples lie approximately within 1
standard deviation, whilst 95% of samples lie within approximately 2 standard
deviations

I So if we find that a parameter has an estimated value of 6 with standard deviation
1.5, we can calculate the 95% confidence interval as between 3 and 9

I We don’t have to stick to 68 or 95% values. If we want, say, an 80% interval, try:
qnorm(0.9)

## [1] 1.281552

(Why 0.9?)
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p-values

I Some people, rather than compute confidence intervals, calculate p-values instead
I These are based on testing a null hypothesis that a particular parameter value is

(usually) 0
I (Can anyone remember the proper definition of a p-value?)
I I don’t find these very useful but we will see them in lots of the default R output
I None of the package we will use in this course (e.g. JAGS and Stan) create p-values
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Summary

I Choosing a probability distribution is hard. For the data sets we use I will try to
give you lots of choices

I Once you have a chosen model you can compute a likelihood
I You can use an optimisation method to get you the best parameter values
I Later in the course we will meet a method (called MCMC) which finds the best

values, also gets the uncertainty, and doesn’t require the assumption of parameter
normality
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