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Learning outcomes

I Understand the terms prior, likelihood and posterior
I Know what a posterior probability distribution is, and why we take samples from it
I Know how to formulate a linear regression model in a Bayesian format
I Be able to suggest appropriate prior distributions for different situations
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Who was Bayes?

An essay towards solving a problem on the doctrine of chances (1763)

P(A|B) = P(B|A)P(A)
P(B)
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What is Bayesian statistics?

I Bayesian statistics is based on an interpretation of Bayes’ theorem
I All quantities are divided up into data (i.e. things which have been observed) and

parameters (i.e. things which haven’t been observed)
I We use Bayes’ interpretation of the theorem to get the posterior probability

distribution, the probability of the unobserved given the observed
I Used now in almost all areas of statistical application (finance, medicine,

environmetrics, gambling, etc, etc)
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Why Bayes?

The Bayesian approach has numerous advantages:

I It’s easier to build complex models and to analyse the parameters you want directly
I We automatically obtain the best parameter estimates and their uncertainty from

the posterior samples
I It allows us to get away from (terrible) null hypothesis testing and p-values
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Bayes theorem in english

Bayes’ theorem can be written in words as:

posterior is proportional to likelihood times prior

. . . or . . .
posterior ∝ likelihood× prior

Each of the three terms posterior, likelihood, and prior are probability distributions
(pdfs).

In a Bayesian model, every item of interest is either data (which we will write as x) or
parameters (which we will write as θ). Often the parameters are divided up into those of
interest, and other nuisance parameters
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Bayes theorem in maths

Bayes’ equation is usually written mathematically as:

p(θ|x) ∝ p(x |θ)× p(θ)

or, more fully:
p(θ|x) = p(x |θ)× p(θ)

p(x)

I The posterior is the probability of the parameters given the data
I The likelihood is the probability of observing the data given the parameters

(unknowns)
I The prior represents external knowledge about the parameters
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A very simple linear regression example

Suppose you had some data that looked like this:
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What you are used to doing

model = lm(log(earn) ~ height_cm, data = dat)
summary(model)

##
## Call:
## lm(formula = log(earn) ~ height_cm, data = dat)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4351 -0.3705 0.1615 0.5761 2.3302
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.895057 0.489107 12.053 < 2e-16 ***
## height_cm 0.022555 0.002866 7.869 8.84e-15 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9066 on 1057 degrees of freedom
## Multiple R-squared: 0.05533, Adjusted R-squared: 0.05444
## F-statistic: 61.91 on 1 and 1057 DF, p-value: 8.836e-15
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What you will now get instead

print(model_run)

## Inference for Bugs model at "4", fit using jags,
## 3 chains, each with 2000 iterations (first 1000 discarded)
## n.sims = 3000 iterations saved
## mu.vect sd.vect 2.5% 25% 50% 75% 97.5% Rhat
## intercept 5.885 0.501 4.901 5.553 5.883 6.226 6.852 1.003
## residual_sd 0.907 0.019 0.870 0.894 0.907 0.920 0.947 1.003
## slope 0.023 0.003 0.017 0.021 0.023 0.025 0.028 1.004
## deviance 2798.545 2.472 2795.738 2796.701 2797.903 2799.639 2805.077 1.002
## n.eff
## intercept 700
## residual_sd 680
## slope 620
## deviance 1700
##
## For each parameter, n.eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor (at convergence, Rhat=1).
##
## DIC info (using the rule, pD = var(deviance)/2)
## pD = 3.1 and DIC = 2801.6
## DIC is an estimate of expected predictive error (lower deviance is better).
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Using prior information

I The Bayesian model in the previous slide divided up everything into parameters (the
intercept, slope and residual standard deviation), and data (the height and
log(earnings) values)

I The software in the background created a posterior probability distribution of the
parameters given the data

I The model I fitted used no prior information. However, if we had done a previous
experiment that suggested the intercept should be around 9 with standard deviation
0.5 we can put this in the model
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A model with prior information

print(model_run_2)

## Inference for Bugs model at "5", fit using jags,
## 3 chains, each with 2000 iterations (first 1000 discarded)
## n.sims = 3000 iterations saved
## mu.vect sd.vect 2.5% 25% 50% 75% 97.5% Rhat
## intercept 7.422 0.352 6.718 7.184 7.421 7.657 8.107 1.003
## residual_sd 0.911 0.020 0.873 0.898 0.911 0.924 0.951 1.001
## slope 0.014 0.002 0.010 0.012 0.014 0.015 0.018 1.002
## deviance 2807.755 4.964 2799.551 2804.190 2807.232 2810.798 2819.251 1.001
## n.eff
## intercept 980
## residual_sd 3000
## slope 1200
## deviance 2900
##
## For each parameter, n.eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor (at convergence, Rhat=1).
##
## DIC info (using the rule, pD = var(deviance)/2)
## pD = 12.3 and DIC = 2820.1
## DIC is an estimate of expected predictive error (lower deviance is better).
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An early example of a Bayesian model

I To create the Bayesian version of this model I used the following JAGS code:
model_code ='
model {

# Likelihood
for(i in 1:N) {
y[i] ~ dnorm(intercept + slope*x[i], residual_sd^-2)

}
# Priors
intercept ~ dnorm(9,0.5^-2)
slope ~ dnorm(0,100^-2)
residual_sd ~ dunif(0,100)

}
'
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Understanding the different parts of a Bayesian model

I The likelihood is the probability of observing the data given the parameters. It
represents the data generating process

I The prior is the probability distribution of the parameters independent from the
current data you have been generated. It often requires care (and philosophy) to
choose. More on this later

I The posterior is the probability distribution of the parameters given the data. It is
always the target of our inference

I The two software packages we will explore (Stan and JAGS), create the posterior
distribution for us
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How do I specify the prior distribution?

There are several choices when it comes to specifying prior distributions:

I Informative, when there is information from a previous study, or other good external
source, e.g intercept ∼ N(−30, 52)

I Vague, when there is only weak information, perhaps as to the likely range of the
parameter e.g. intercept ∼ N(0, 1002)

I Flat, when there is no information at all about a parameter (very rare). In JAGS,
write intercept ~ dflat()

In fact, choosing the prior and choosing the likelihood are very similar problems
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Practical differences between frequentist statistics and Bayes

I In frequentist statistics you tend to get a single best estimate of a parameter and a
standard error, often assumed normally distributed, and a p-value

I In Bayesian statistics you get a large set of samples of the parameter values which
match the data best. You get to choose what you do with these

I In frequentist statistics if the p-value is less than 0.05 you win. If not you cry and
try a different model

I In Bayesian statistics you try to quantify the size of an effect from the posterior
distribution, or find a particular posterior probability, e.g. P(slope > 0 given the
data).
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More generally choosing a likelihood and a prior

I The key to choosing a likelihood is to pick a probability distribution which matches
your data, e.g. if it’s a continuous measurement and is unbounded then a normal
distribution. If it’s count data bounded above and below then a Binomial might be
appropriate

I The key to choosing a prior distribution is to choose values which you believe
represent the reasonable range that the parameter can take, or come from a related
study in the literature

I Again, use an informative prior if possible

Note: the shape of the distribution of the response variable is usually completely
unimportant when choosing the likelihood!
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Stan vs JAGS

We will be using two different software tools to calculate posterior distributions. These
represent the state of the art for user-friendly, research quality Bayesian statistics.

I Stan positives: very flexible, uses sensible distribution names, everything is declared,
lots of documentation support, written by people at the top of the field

I Stan negatives: cannot have discrete parameters, some odd declaration choices,
slower to run code, code tends to be longer

I JAGS positives: very quick for simple models, no declarations required, a bit older
than Stan so more queries answered online

I JAGS negatives: harder to get complex models running, not as fancy an algorithm
as Stan, crazy way of specifying normal distributions
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Posterior computation in Stan

A Stan model looks like this:
stan_code = '
data {

int N;
vector[N] x;
vector[N] y;

}
parameters {

real intercept;
real slope;
real<lower=0> residual_sd;

}
model {

// Likelihood
y ~ normal(intercept + slope * x, residual_sd);
// Priors
intercept ~ normal(0, 100);
slope ~ normal(0, 100);
residual_sd ~ uniform(0, 100);

}
'
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Running a model in Stan

To run the Stan model:
stan_run = stan(data = list(N = nrow(dat),

y = log(dat$earn),
x = dat$height_cm),

model_code = stan_code)
print(stan_run)
plot(stan_run)
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Posterior computation in JAGS
The same model in JAGS:
jags_code = '
model{

# Likelihood
for(i in 1:N) {
y[i] ~ dnorm(intercept + slope * x[i],

residual_sd^-2)
}
# Priors
intercept ~ dnorm(0, 100^-2)
slope ~ dnorm(0, 100^-2)
residual_sd ~ dunif(0, 100)

}
'

Note the ˆ-2 everywhere - JAGS uses precision rather than standard deviation in the
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Running the JAGS mdoel
jags_run = jags(data = list(N = nrow(dat),

y = log(dat$earn),
x = dat$height_cm),

parameters.to.save = c('intercept',
'slope',
'residual_sd'),

model.file = textConnection(jags_code))
print(jags_run)
plot(jags_run)
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Calculating the posterior vs sampling from it
I There are two ways to get at a posterior:

1. Calculate it directly using hard maths
2. Use a simulation method

I Number 1 is impractical once you move beyond a few parameters, so number 2 is
used by almost everybody

I This means that we create samples from the posterior distribution. Here are three
samples from the earnings example:

## deviance intercept residual_sd slope
## [1,] 2800.902 5.453393 0.8680240 0.02525612
## [2,] 2799.329 5.588173 0.9064387 0.02465221
## [3,] 2797.616 5.583262 0.9320569 0.02438453

I We often create thousands of posterior samples to represent the posterior
distribution
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Things you can do with posterior samples

I Create histograms or density plots:
I Individual summaries such as means, standard deviations, and quantiles (e.g. 95%

confidence intervals)
I Joint summaries such as scatter plots or correlations
I Transformations such as logs/exponents, squares/square roots, etc

The posterior distribution will usually be stored in a matrix where each row is a sample,
and each column is a different parameter. Having the posterior distribution enables you
to get at exactly the quantities you are interested in
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Summary so far: for and against Bayes

For:

I A Bayesian model can be simply displayed as a likelihood and a prior. Everything is
explicit

I JAGS/Stan finds the posterior distribution for us so we don’t need to do any maths
I We can get exactly the quantity we are interested in, the probability distribution of

our unknowns given our knowns

Against:

I It can be hard to create a prior distribution (and a likelihood)
I Not having p-values can make papers harder to publish (but this is changing)
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Checking assumptions (e.g. residuals)

I Sometimes people, because Bayesian modelling seems much richer and incorporates
more information, think that their model is perfect

I In reality we need to check our assumptions. This may include:

1. Checking residuals in a linear regression model
2. Checking whether the parameter values actually match the data
3. Seeing whether a simpler or richer model might fit the data better

Some of this we will cover in later classes, but e.g. traditional residual analysis for linear
regression is still important here
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The danger of vague priors

I Suppose you use the prior distribution intercept ~ dnorm(0, 100ˆ-2) in JAGS
because you had very little information about the intercept. Is this a reasonable
thing to do? Do you honestly believe that the intercept might be as small as -200
or as big as 200?

I If you fit a model and the parameters do not match your views about the data,
there must be some information you have not encoded in the prior, go back and
change it!

I In more complex models, you need the prior to constrain some of the parameters so
that the model will fit. These are known as regularisation priors

I Use an informative prior when you can
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General tips

I If you have lots of disparate data, try to build one model for all it. You’ll be able to
borrow strength from the data (e.g. in a hierarchical model) and reduce the
uncertainty in your parameter estimates

I Try your hardest to use informative priors, and always justify the values you use
(especially when trying to publish). In this course we’re presenting generic examples
so have almost always used vague priors

I Check your model. Many of the usual requirements from traditional statistics
(e.g. residual checks) are still relevant in the Bayesian world. There are some extra
Bayesian tricks we can also do; discussed in later classes
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Summary

I Bayesian statistical models involve a likelihood and a prior. These both need to be
carefully chosen. From these we create a posterior distribution

I The likelihood represents the information about the data generating process; the
prior information about the unknown parameters

I We usually create and analyse samples from the posterior probability distribution of
the unknowns (the parameters) given the knowns (the data)

I From the posterior distribution we can create means, medians, standard deviations,
credible intervals, etc, from samples we take using e.g. JAGS or Stan
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