
Class 4: Bayesian linear and generalised linear models (GLMs)

Andrew Parnell
andrew.parnell@mu.ie

PRESS RECORD

1 / 38

Learning outcomes

I Understand the basic formulation of a GLM in a Bayesian context
I Understand the code for a GLM in JAGS/Stan
I Be able to pick a link function for a given data set
I Know how to check model assumptions for a GLM

2 / 38

Revision: linear models

I The simplest version of a linear regression model has:
I A response variable (y) which is what we are trying to predict/understand
I An explanatory variable or covariate (x) which is what we are trying to predict the

response variable from
I Some residual uncertainty (ε) which is the leftover uncertainty that is not accounted

for by the explanatory variable

I Our goal is to predict the response variable from the explanatory variable, or to try
and discover if the explanatory variable causes some kind of change in the response

3 / 38

The linear models in maths

I We write the linear model as:

yi = α+ βxi + εi

where α is the intercept, β the slope, and i = 1, . . . ,N represents each of the N
observations

I Usually we make the additional assumption that εi ∼ N(0, σ2) where σ is the
residual standard deviation

I Under this assumption it is common to write yi |xi , α, β, σ ∼ N(α+ βxi , σ
2).

4 / 38

The data generating process for a standard LM

If we believe that a linear model is appropriate for our data, there are several ways we
could generate data from the model. Here is one way:
N = 10
x = 1:N
y = rnorm(N, mean = -2 + 0.4 * x, sd = 1)

Here is another:
eps = rnorm(N, mean = 0, sd = 1)
y = -2 + 0.4 * x + eps

5 / 38

Multiple covariates

I We can extend LMs to have multiple covariates if we want, e.g.
y = rnorm(N, mean = -2 + 0.4 * x1 - 0.3 * x2, sd = 1)

I Alternatively we can incorporate multiplicative interactions. . .
y = rnorm(N, mean = -2 + 0.4 * x1 - 0.3 * x2 +

0.05 * x1 * x2, sd = 1)

I . . . or non-linear effects
y = rnorm(N, mean = -2 + 0.4 * x1 - 0.3 * x1^2 +

0.05 * x1 * x2, sd = 1)

6 / 38

Example: earnings data

I Going back to the earnings data, suppose we want to fit a model to predict log
earnings based on height and whether respondent is white (eth==3) or not

I The model is:

log(earnings) ∼ N(α+ β1height + β2white, σ2)

I We want to get the posterior distribution of α, β1, β2 and σ given the data
I Let’s fit this model in JAGS and Stan and look at the results

7 / 38

Fitting linear regression models in JAGS

Model code:
library(R2jags)
dat = read.csv('../data/earnings.csv') # Called dat
jags_code = '
model{

Likelihood
for(i in 1:N) {

y[i] ~ dnorm(alpha + beta1*x1[i] + beta2*x2[i], sigma^-2)
}
Priors
alpha ~ dnorm(0, 20^-2)
beta1 ~ dnorm(0, 1^-2)
beta2 ~ dnorm(0, 10^-2)
sigma ~ dunif(0, 10)

}
'
jags_run = jags(data = list(N = nrow(dat),

y = log(dat$earn),
x1 = dat$height_cm,
x2 = as.integer(dat$eth ==3)),

parameters.to.save = c('alpha',
'beta1',
'beta2',
'sigma'),

model.file = textConnection(jags_code))

8 / 38

Output
print(jags_run)

Inference for Bugs model at "4", fit using jags,
3 chains, each with 2000 iterations (first 1000 discarded)
n.sims = 3000 iterations saved
mu.vect sd.vect 2.5% 25% 50% 75% 97.5% Rhat
alpha 5.856 0.483 4.907 5.521 5.862 6.174 6.808 1.001
beta1 0.022 0.003 0.017 0.020 0.022 0.024 0.028 1.001
beta2 0.101 0.074 -0.041 0.052 0.102 0.150 0.243 1.001
sigma 0.907 0.020 0.871 0.894 0.907 0.920 0.947 1.001
deviance 2797.538 2.844 2794.038 2795.443 2796.843 2798.885 2804.886 1.001
n.eff
alpha 3000
beta1 3000
beta2 2100
sigma 3000
deviance 3000
##
For each parameter, n.eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor (at convergence, Rhat=1).
##
DIC info (using the rule, pD = var(deviance)/2)
pD = 4.0 and DIC = 2801.6
DIC is an estimate of expected predictive error (lower deviance is better).

9 / 38

What do the results actually mean?

I We now have access to the posterior distribution of the parameters:
post = jags_run$BUGSoutput$sims.matrix
head(post)

alpha beta1 beta2 deviance sigma
[1,] 5.268679 0.02541443 0.12469466 2796.935 0.9177323
[2,] 6.538034 0.01804300 0.13793808 2796.089 0.9113133
[3,] 5.851459 0.02230384 0.08265817 2794.689 0.8894906
[4,] 6.296208 0.01959450 0.12562921 2794.456 0.9049758
[5,] 5.289048 0.02538627 0.11447730 2795.984 0.9121253
[6,] 6.534350 0.01801985 0.15100297 2801.643 0.9542791

10 / 38

Plots of output

alpha_mean = mean(post[,'alpha'])
beta1_mean = mean(post[,'beta1'])
beta2_mean = mean(post[,'beta2'])
plot(dat$height_cm, log(dat$earn))
lines(dat$height_cm, alpha_mean +

beta1_mean * dat$height_cm, col = 'red')
lines(dat$height_cm, alpha_mean +

beta1_mean * dat$height_cm + beta2_mean,
col = 'blue')

11 / 38

Plots

150 160 170 180 190

6
7

8
9

10
11

12

dat$height_cm

lo
g(

da
t$

ea
rn

)

12 / 38

Fitting in Stan
stan_code = '
data {

int<lower=0> N;
vector[N] y;
vector[N] x1;
vector[N] x2;

}
parameters {

real alpha;
real beta1;
real beta2;
real<lower=0> sigma;

}
model {

y ~ normal(alpha + x1 * beta1 + x2 * beta2, sigma);
}
' 13 / 38

Running the Stan version

library(rstan)
stan_run = stan(data = list(N = nrow(dat),

y = log(dat$earn),
x1 = dat$height_cm,
x2 = as.integer(dat$eth==3)),

model_code = stan_code)

14 / 38

Stan output
plot(stan_run)

alpha

beta1

beta2

sigma

0 2 4 6

15 / 38

To standardise or not?

I Most regression models work better if the covariates are standardised (subtract the
mean and divide by the standard deviation) before you run the model

I Stan seems to struggle with regression models where the data are not standardised
I The advantage of standardising is that you get more numerically stable results (this

is true of R’s lm function too), and that you can directly compare between the
different slopes

I The disadvantage is that the slope values are no longer in the original units
(e.g. cm)

16 / 38

From LM to GLM

I We use a generalised linear model (GLM) when the normal distribution is not
longer appropriate for the data

I This probability distribution should match the type of data (e.g. count data, binary,
etc) and will have its own parameters

I We often have to transform the parameters if we still want to use a linear regression
type relationship with a covariate. The transformation is called a link function

I In a Bayesian generalised linear model we just compute a likelihood and combine it
with a prior distribution just like every other model we fit

17 / 38

The data generating process for a logistic regression
I What if the response variable was binary? Clearly the linear regression simulation code will not produce

binary values
I Instead we could simulate from the binomial distribution:

y = rbinom(N, size = 1, prob = -2 + 0.4 * x)

. . . but this will produce NAs as the prob argument needs to be between 0 and 1. We need to transform the
values involving the covariate

I A popular way is to use the inverse logit function. Look!
-2 + 0.4 * x

[1] -1.6 -1.2 -0.8 -0.4 0.0 0.4 0.8 1.2 1.6 2.0
exp(-2 + 0.4 * x)/(1 + exp(-2 + 0.4 * x))

[1] 0.1679816 0.2314752 0.3100255 0.4013123 0.5000000 0.5986877 0.6899745
[8] 0.7685248 0.8320184 0.8807971

I In fact you can take any number a from −∞ to ∞ and create exp(a)/(1 + exp(a)) and it will always lie
between 0 and 1

18 / 38

Generating binomial data

I Thus a way to generate binary data which allows for covariates is:
library(boot)
p = inv.logit(-2 + 0.4 * x)
y = rbinom(N, size = 1, prob = p)
y

[1] 0 0 1 0 0 1 1 0 1 1

I The logit function itself is log
(

p
1−p

)
and will turn the probabilities from the range

(0,1) to the range (−∞,∞)
I This type of model is known as logistic-Binomial regression (or just logistic

regression) and the logit is known as the link function
I It’s also possible to generate data with maximum value bigger than 1 by changing

the size parameter

19 / 38

Generating other types of data

I Once we have discovered link functions, we can use them to generate other types of
data, e.g. Poisson data via the log link:

lambda = exp(-2 + 0.4 * x)
y = rpois(N, lambda)
y

[1] 0 0 0 0 0 1 0 3 7 9

I The rate (λ) of the Poisson distribution has to be positive, so taking the log of it
changes its range to (−∞,∞) as before. The inverse-link (exp) turns the
unrestricted ranges into something that must be positive

20 / 38

Example: Swiss Willow tit data

Recall the Willow tit data:
swt = read.csv('../data/swt.csv')
head(swt)

rep.1 rep.2 rep.3 c.2 c.3 elev forest dur.1 dur.2 dur.3 length alt
1 0 0 0 0 0 420 3 240 58 73 6.2 Low
2 0 0 0 0 0 450 21 160 39 62 5.1 Low
3 0 0 0 0 0 1050 32 120 47 74 4.3 Med
4 0 0 0 0 0 1110 35 180 44 71 5.4 Med
5 0 0 0 0 0 510 2 210 56 73 3.6 Low
6 0 0 0 0 0 630 60 150 56 73 6.1 Low

21 / 38

Fitting a Binomial-logistic model

I Suppose we want to fit a Binomial-logistic model to the first binary replicate with
forest cover as a covariate

I The model is:
yi ∼ Bin(1, pi), logit(pi) = α+ βxi

I Note that there is no residual standard deviation parameter here. This is because
the variance of the binomial distribution depends only on the number of counts
(here 1) and the probability, i.e. Var(yi) = pi(1− pi)

22 / 38

Fitting the model in JAGS
jags_code = '
model{

Likelihood
for(i in 1:N) {

y[i] ~ dbin(p[i], 1)
logit(p[i]) <- alpha + beta*x[i]

}
Priors
alpha ~ dnorm(0, 20^-2)
beta ~ dnorm(0, 20^-2)

}
'
jags_run = jags(data = list(N = nrow(swt),

y = swt$rep.1,
x = swt$forest),

parameters.to.save = c('alpha',
'beta'),

model.file = textConnection(jags_code))
23 / 38

Looking at the output
Histogram of pars[, "alpha"]

pars[, "alpha"]

F
re

qu
en

cy

−3.0 −2.5 −2.0 −1.5 −1.0

0
50

10
0

15
0

20
0

Histogram of pars[, "beta"]

pars[, "beta"]

F
re

qu
en

cy

0.01 0.02 0.03 0.04

0
50

10
0

15
0

20
0

24 / 38

Plotting the fits

I It’s not as easy to plot a fitted line in a Binomial regression model, but we can plot
the probabilities:

plot(swt$forest, swt$rep.1)
points(swt$forest,

inv.logit(mean(pars[,'alpha']) +
mean(pars[,'beta'])*swt$forest),

col = 'red')

0 20 40 60 80 100

0.
0

0.
4

0.
8

swt$forest

sw
t$

re
p.

1

25 / 38

Poisson models

I Here’s some JAGS code for a Poisson model:
jags_code = '
model{

Likelihood
for(i in 1:N) {

y[i] ~ dpois(lambda[i])
log(lambda[i]) <- alpha + beta*x[i]

}
Priors
alpha ~ dnorm(0, 20^-2)
beta ~ dnorm(0, 20^-2)

}
'

26 / 38

Offsets

I For Poisson data it’s quite common for the counts to be dependent on the amount
of effort required to collect the data

I If there is a variable that quantifies this amount of effort it should be included in
the model, as it will be directly linked to the size of the counts

I These variables are often called an offset, and are included in the model likelihood
via

y[i] ~ dpois(offset * lambda[i])

27 / 38

Further examples of GLM-type data

I Later in the course we will talk about different types of models for count data
I The Poisson is a bit restrictive, in that the variance and the mean of the counts

should be the same, which is rarely satisfied by data
I We’ll extend to over-dispersed and zero-inflated data
I We’ll also discuss multivariate models using e.g. the multinomial distribution

28 / 38

What are JAGS and Stan doing in the background?

I JAGS and Stan run a stochastic algorithm called Markov chain Monte Carlo to
create the samples from the posterior distribution

I This involves:
1. Guessing at initial values of the parameters. Scoring these against the likelihood and

the prior to see how well they match the data
2. Then iterating:

2.1 Guessing new parameter values which may or may not be similar to the previous values
2.2 Seeing whether the new values match the data and the prior by calculating new scores
2.3 If the scores for the new parameters are higher, keep them. If they are lower, keep them

with some probability depending on how close the scores are, otherwise discard them
and keep the old values

I What you end up with is a set of parameter values for however many iterations you
chose.

29 / 38

How many iterations?

I Ideally you want a set of posterior parameter samples that are independent across
iterations and is of sufficient size that you can get decent estimates of uncertainty

I There are three key parts of the algorithm that affect how good the posterior
samples are:
1. The starting values you chose. If you chose bad starting values, you might need to

discard the first few thousand iterations. This is known as the burn-in period
2. The way you choose your new parameter values. If they are too close to the previous

values the MCMC might move too slowly so you might need to thin the samples out
by taking e.g. every 5th or 10th iteration

3. The total number of iterations you choose. Ideally you would take millions but this
will make the run time slower

JAGS and Stan have good default choices for these but for complex models you often
need to intervene

30 / 38

Plotting the iterations

You can plot the iterations for all the parameters with traceplot, or for just one with
e.g.
plot(post[,'alpha'], type = 'l')

0 500 1000 1500 2000 2500 3000

4.
5

5.
5

6.
5

7.
5

Index

po
st

[,
"a

lp
ha

"]

A good trace plot will show no patterns or runs, and will look like it has a stationary
mean and variance

31 / 38

How many chains?

I Beyond increasing the number of iterations, thinning, and removing a burn-in
period, JAGS and Stan automatically run multiple chains

I This means that they start the algorithm from 3 or 4 different sets of starting
values and see if each chain converges to the same posterior distribution

I If the MCMC algorithm has converged then each chain should have the same mean
and variance.

I Both JAGS and Stan report the Rhat value, which is close to 1 when all the chains
match

I It’s about the simplest and quickest way to check convergence. If you get Rhat
values above 1.1, run your MCMC for more iterations

32 / 38

What else can I do with the output
I We could create credible intervals (Bayesian confidence intervals):

apply(post, 2, quantile, probs = c(0.025, 0.975))

alpha beta1 beta2 deviance sigma
2.5% 4.907427 0.01682908 -0.04136384 2794.038 0.8706419
97.5% 6.808259 0.02782015 0.24270217 2804.886 0.9474919

I Or histograms
hist(post[,'beta2'], breaks = 30)

Histogram of post[, "beta2"]

post[, "beta2"]

F
re

qu
en

cy

−0.2 −0.1 0.0 0.1 0.2 0.3 0.4

0
15

0
30

0

33 / 38

Checking model fit

I How do we know if this model fits the data well or not?
I One way is to simulate from the posterior distribution of the parameters, and

subsequently simulate from the likelihood to see if the these data match the real
data we observed

I This is known as a posterior predictive check

34 / 38

Simple posterior predictive distributions
I The easier way is to put an extra line in the JAGS code:

jags_code = '
model{

Likelihood
for(i in 1:N) {

y[i] ~ dnorm(alpha + beta1*x1[i] + beta2*x2[i],
sigma^-2)

y_sim[i] ~ dnorm(alpha + beta1*x1[i] + beta2*x2[i],
sigma^-2)

}
Priors
alpha ~ dnorm(0, 20^-2)
beta1 ~ dnorm(0, 1^-2)
beta2 ~ dnorm(0, 10^-2)
sigma ~ dunif(0, 10)

}
' 35 / 38

Posterior predictive outputs

6 7 8 9 10 11 12

9.
2

9.
4

9.
6

9.
8

10
.0

10
.2

log(dat$earn)

ap
pl

y(
pa

rs
, 2

, "
m

ea
n"

)

36 / 38

Checking model assumptions

I Just like the linear regression example, we can create posterior predictive
distributions for the binary data from the binomial distribution

I However, it isn’t as easy to plot as the regression situation as all the true values are
0 and 1.

I Instead people often use classification metrics which we do not cover in this course
(but can discuss if required)

37 / 38

Summary

I GLMs are very easy to fit in JAGS/Stan once you get the hang of link functions
I It takes a bit of care to get the posterior distribution out of the model and to

decide what you want to do with that
I There are lots of different types of GLM so pick the one that matches your data

best
I Don’t forget to check model assumptions via e.g. a posterior predictive check. We’ll

cover more checks later in the course

38 / 38

