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Learning outcomes

I Be able to build a model by thinking about the data generating process
I Be able to choose prior distributions for regression models
I Understand how to fit a hierarchical regression model in JAGS/Stan
I Be able to compare and check the fit of regression models
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Thinking about models as methods for generating data

So far we have:

I Thought about setting up models by choosing parameter values then simulating
from the likelihood to get pseudo-data that should hopefully look like our real data

I We can separate this into two parts: simulating pseudo-data before we have seen
the real data, and simulating pseudo-data after we have seen the real data

I The first is a way of getting good prior distributions
I The latter is our posterior predictive check of model fit
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Simulating pseudo-data before the experiment

I Let’s think again about the earnings data where we want to estimate log(earnings)
from people’s height in cm using a linear regression model with height is mean
centered, i.e.

log(earnings) ∼ N(α + β × (height − mean(height)), σ2)

I Before we have seen the data, we might know that we’re going to collect data on
about 100 people in the range of 150 to 190 cm:

N = 100
x = sort(runif(N, 150, 190))

I Let’s guess that the earnings are likely to be in the range of about 20k to 200k per
year, so on the log scale this is from about 10 to 12
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Simulating pseudo-data continued

I Before seeing the data I have no idea about whether height affects earnings, so I’d
certainly be willing to consider a value of 0 for the slope. If there was a strong
positive effect then people of about 190cm would be earning about 12 (on the log
scale) and people of about 150cm would be earning the least. This gives a slope of
about 0.05, but the opposite might also be true. To stay conservative let’s a
suggest a prior on the slope of N(0, 0.12)

I For the intercept we can guess that it is unlikely to be beyond the range (10, 12) so
let’s use N(11, 22).

I The residual standard deviation is unlikely to be much bigger than the range of
salaries so let’s use U(0, 5)
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A simulated data set

alpha = rnorm(1, mean = 10, sd = 2)
beta = rnorm(1, mean = 0, sd = 0.1)
sigma = runif(1, 0, 5)
y = rnorm(N, alpha + beta * (x - mean(x)), sd = sigma)
plot(x, y)
lines(x, alpha + beta * (x - mean(x)), col = 'red')
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Now fit the model
library(R2jags)
jags_code = '
model{

# Likelihood
for(i in 1:N) {

y[i] ~ dnorm(alpha + beta*(x[i] - mean(x)),
sigma^-2)

y_sim[i] ~ dnorm(alpha + beta*(x[i] - mean(x)),
sigma^-2)

}
# Priors
alpha ~ dnorm(11, 2^-2)
beta ~ dnorm(0, 0.1^-2)
sigma ~ dunif(0, 5)

}
'
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Plot the priors and posteriors
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Plot the posterior predictive
pred = pars$y_sim
y_sim_summary = apply(pred, 2, 'quantile',

probs = c(0.05, 0.5, 0.95))
plot(log(dat$earn), y_sim_summary[2,],

xlab = 'True y value',
ylab = 'Posterior Predicted y value')

abline(a=0, b=1, col = 'red')
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From standard to hierarchical linear models

I Suppose now we want to see if there was an ethnicity effect on the relationship
between height and earnings

I Some possible choices:
I Divide the data up into different ethnicities and fit the model separately
I Add ethnicity in as a covariate, this will lead to a varying intercepts model
I Add ethnicity in as an interaction with height, this will lead to a varying slopes model

I An example of the varying intercepts model is:

yi ∼ N(αethnicityi
+ β(xi − x̄), σ2)
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Writing a varying intercepts/slopes model in JAGS/Stan
I One way to write the varying intercepts model is to simply include it an extra effect:

log_earn[i] ~ dnorm(alpha1 * ethnicity_1
+ alpha2 * ethnicity_2 + ...
+ beta * height[i],

sigma^-2)

I A neater way is to use the double indexing:

log_earn[i] ~ dnorm(alpha[ethnicity[i]] + beta * height[i],
sigma^-2)

I This means that instead of there being a single beta value there are multiple different
values, according to when ethnicity[i] is value 1, 2, 3, or 4

I We can easily extend to varying intercepts and slopes:

log_earn[i] ~ dnorm(alpha[ethnicity[i]] +
beta[ethnicity[i]] * height[i],

sigma^-2)
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Prior distributions for varying intercepts and slopes

I Let’s think about our different choices for prior distributions on these varying parameters
I Remember we now have four values alpha[1], alpha[2], . . . and beta[1], beta[2], . . .

i.e. intercepts and slopes depending on ethnicity
I One choice is to give totally independent prior distributions,

e.g. α1 ∼ N(11, 22), α2 ∼ N(11, 22), ..., β1 ∼ N(0, 0.12), β2 ∼ N(0, 0.12),. . .
I However, the above can fall down when there are very small numbers in some of the groups
I A better choice is to put a prior distribution on the alpha and beta values that ties them

together and add some extra parameters. For example, αethnicityi
∼ N(µα, σ

2
α), and

βethnicityi
∼ N(µβ , σ

2
β)

I Under this model we can borrow strength between the different ethnicities, and put extra
prior distributions on the new parameters µα, µβ , σα, σβ
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Our first hierarchical model!
jags_code = '
model{

# Likelihood
for(i in 1:N) {

y[i] ~ dnorm(alpha[eth[i]] +
beta[eth[i]]*(x[i] - mean(x)),

sigma^-2)
}
# Priors
for(j in 1:N_eth) {

alpha[j] ~ dnorm(mu_alpha, sigma_alpha^-2)
beta[j] ~ dnorm(mu_beta, sigma_beta^-2)

}
mu_alpha ~ dnorm(11, 2^-2)
mu_beta ~ dnorm(0, 0.1^-2)
sigma ~ dunif(0, 5)
sigma_alpha ~ dunif(0, 2)
sigma_beta ~ dunif(0, 2)

}
'
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About the hierarchical model

I The parameters µα and µβ have useful interpretations: they are the overall mean
intercept and the overall mean slope for all observations removing the effect of
ethnicity

I The parameters σα, and σβ have useful interpretations too: they are the variability
in the intercept and slope between ethnicity

I You may have met this type of model in other modelling courses when it is
occasionally called random effects modelling.
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Running the model

jags_run = jags(data = list(N = nrow(dat),
y = log(dat$earn),
eth = dat$eth,
N_eth = length(unique(dat$eth)),
x = dat$height_cm),

parameters.to.save = c('alpha',
'beta',
'sigma',
'mu_alpha',
'mu_beta',
'sigma_alpha',
'sigma_beta'),

model.file = textConnection(jags_code))

15 / 33



Plotting the output - mean slopes
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Are the slopes different?
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Setting up hierarchical prior distributions

I In general a hierarchical model is created whenever we put prior distributions on
prior distributions

I The lower level parameters in the model are often called hyper-parameters

I The normal distribution is by far the most common probability distribution, but
there are others which can also be useful, some of which we will come to later in
the course

I Because the parameters in the higher levels of the hierarchy have fewer values
(e.g. only 4 slopes and intercepts) if there are explanatory variables that work on
the level of ethnicity, we can include them at this level, rather than at the level of
the observations.
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A note on priors for standard deviations

I We set our prior distributions on the standard deviations parameters as Uniform
I However, not all standard deviation parameters are created equal!
I The standard deviation of the residuals, here σ, is estimated from N observations

so is quite well defined
I By contrast the standard deviations of alpha and beta, σα and σβ are estimated

based on just the four different ethnicity groups
I We therefore need to be a bit more careful with prior distributions for these

parameters. The usual recommendation is to use a half-t-distribution on these
parameters rather than a uniform
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Over-estimating effects
I Suppose we had fitted the independent priors version of the model:

jags_code = '
model{

# Likelihood
for(i in 1:N) {

y[i] ~ dnorm(alpha[eth[i]] +
beta[eth[i]]*(x[i] - mean(x)),

sigma^-2)
}
# Priors
for(j in 1:N_eth) {

alpha[j] ~ dnorm(11, 10^-2)
beta[j] ~ dnorm(0, 0.1^-2)

}
sigma ~ dt(0, 2^-2, 1)T(0,)

}
'
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Results (hierarchical model green, independent model red)
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Model comparison
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Model comparison: an introduction

I We can come up with the fanciest model in the world but if it does not meet our
desired goals (either prediction or causation) then we cannot publish or use it

I You can broadly split model comparison into two parts: absolute model comparison
and relative model comparison

I In absolute model comparison, we are looking at how well a specific model fits the
data at hand

I In relative model comparison, we can only look at how well a set of models
performs on the same data with the goal of choosing the best one (or group)
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Relative model comparison: model information criteria

I You might have come across these before: Akaike Information Criterion (AIC),
Bayesian Information Criterion (BIC)

I The general idea is that the score on the likelihood is a good measure of model fit,
except for the fact that more complex models will generally have higher likelihood
scores

I If we penalise these scores by some measure of the complexity of the model then we
can compare models across complexities

I The usual measure of complexity is some function of the number of parameters
I Because these are relative model comparisons, the best model according to an IC

might still be useless!
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Different types of information criteria

I For various historical reasons, people tend to transform the likelihood score into the
deviance, which is minus twice the log-likelihood score

I They then add a model complexity term onto it
I The two most common ICs are:

AIC : −2 log L + 2p

BIC : −2 log L + p log n

where p is the number of parameters and n is the number of observations
I We usually pick the smallest values of these across different models
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Information criteria for Hierarchical models

I For Bayesian models it’s hard to know which value of L to use, seeing as at each
iteration we get a different likelihood score.

I Two specific versions of IC have been developed for these situations
I The first, called the Deviance Information Criteria (DIC) is calculated via:

DIC : −2 log Lmax + 2pD

where pD is the effective number of parameters
I The second called the Widely Applicable Information Criterion (WAIC) which is

calculated as:
WAIC : −2 log Lmax + pWAIC

I Here pWAIC is a measure of the variability of the likelihood scores
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Which information criterion should I use?

I WAIC and DIC are built for Bayesian hierarchical models
I DIC is included by default in the R2jags package
I WAIC is included in the loo package which is installed alongside Stan
I WAIC is considered superior as it also provides uncertainties on the values. Most of

the others just give a single value
I More generally there is a philosophical argument about whether we ever want to

choose a single best model
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Absolute model criteria: cross validation

I Cross validation (CV) works by:
1. Removing part of the data,
2. Fitting the model to the remaining part,
3. Predicting the values of the removed part,
4. Comparing the predictions with the true (left-out) values

I It’s often fitted repeatedly, as in k-fold CV where the data are divided up into k
groups, and each group is left out in turn

I In smaller data sets, people perform leave-one-out cross-validation (LOO-CV)
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Example: 5-fold cross-validation
jags_code = '
model{

# Likelihood
for(i in 1:N) {

y[i] ~ dnorm(alpha +
beta*(x[i] - mean(x)),

sigma^-2)
}
for(j in 1:N_pred) {

y_pred[j] ~ dnorm(alpha +
beta*(x_pred[j] - mean(x)),

sigma^-2)
}
alpha ~ dnorm(11, 2^-2)
beta ~ dnorm(0, 0.1^-2)
sigma ~ dunif(0, 5)

}
'
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Example continued
folds = sample(rep(1:5, length = nrow(dat)))
mse_per_obs = rep(NA, nrow(dat))
for(i in 1:5) {

curr_data = subset(dat, folds != i)
curr_pred = subset(dat, folds == i)
jags_run = jags(data = list(N = nrow(curr_data),

y = log(curr_data$earn),
x = curr_data$height_cm,
N_pred = nrow(curr_pred),
x_pred = curr_pred$height_cm),

parameters.to.save = 'y_pred',
model.file = textConnection(jags_code))

out_pred = jags_run$BUGSoutput$mean$y_pred
mse_per_obs[folds ==i] = (log(curr_pred$earn) - out_pred)^2

}
sqrt(mean(mse_vals))
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Pros and cons of CV

I We might also run the 5-fold CV on the previous slide for different complexity
models and see which had the smallest root mean square error of prediction
(RMSEP), i.e. use it as a relative criteria

I CV is great because it actually directly measures the performance of the model on
real data, based on data the model hasn’t seen

I However, it’s computationally expensive, and problems occur in hierarchical models
if some groups are small, and therefore might get left out of a fold
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An alternative: continuous model expansion

I There are lots of clever ways to set up prior distributions so that a model choice
step is part of the model fit itself

I One way is partial pooling, by which we force e.g. varying slope and intercept
parameters to the same value (or not)

I Another way is to put shrinkage or selection priors on the parameters in the model,
possibly setting them to zero
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Summary

I A hierarchical model is one where there are extra layers in the model, priors on priors
I For simple regression models, we can having varying slopes and intercepts by group,

and borrow strength even when we have few observations for a group
I We always need to be careful with priors, especially on hyper-parameters
I There are lots of good methods for comparing between models, especially WAIC

and DIC
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