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Learning outcomes:

I Understand the modelling implications of moving from linear to hierarchical
generalised linear models (HGLMs)

I Know some of the different versions of Hierarchical GLMs
I Be able to fit HGLMS in JAGS
I Be able to expand and summarise fitted models
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From LMs to HGLMs

I Reminder: a hierarchical model has prior distributions on the parameters which
depend on further parameters

I A generalised linear model is one in which the probability distribution is not normal,
and a link function serves to match the mean of the distribution to the covariates

I Within this framework, we can borrow the ideas from the previous class to create
hierarchical GLMs

I We will go through four examples: binomial-logit, Poisson, robust regression, and
ordinal regression
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Example 1: binomial-logit

I In class 2, we met the Binomial-logit model for binary data:

yi ∼ Bin(1, pi ), logit(pi ) = α + β(xi − x̄)

Here logit(pi ) is the link function equal to log
(

pi
1−pi

)
and transforms the bounded

probabilities into an unbounded space

I If we have non-binary data we just change the likelihood:

yi ∼ Bin(Ni , pi ), logit(pi ) = α + β(xi − x̄)

I In a hierarchical version of this model, we vary the latent parameters α and β and
give them prior distributions
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The swiss willow tit data

swt = read.csv('../data/swt.csv', stringsAsFactors = TRUE)
head(swt)

## rep.1 rep.2 rep.3 c.2 c.3 elev forest dur.1 dur.2 dur.3 length alt
## 1 0 0 0 0 0 420 3 240 58 73 6.2 Low
## 2 0 0 0 0 0 450 21 160 39 62 5.1 Low
## 3 0 0 0 0 0 1050 32 120 47 74 4.3 Med
## 4 0 0 0 0 0 1110 35 180 44 71 5.4 Med
## 5 0 0 0 0 0 510 2 210 56 73 3.6 Low
## 6 0 0 0 0 0 630 60 150 56 73 6.1 Low
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A hierarchical model
I Suppose we want to fit a model on the sum yi = rep.1 + rep.2 + rep.3:

yi ∼ Bin(Ni , pi ), logit(pi ) = αaltitudei
+ βaltitudei

(xi − x̄)

where xi is the percentage of forest cover
I What prior distributions should we use for α and β?
I Useful side note: A value of 10 on the logit scale leads to a probability of about 1, and a

value of -10 leads to a probability of about 0 (you can test this by typing inv.logit(10))
so I wouldn’t expect the value of logit(pi ) to ever get much bigger than 10 or smaller than
-10

I I have no idea whether we are more likely to find these birds in high percentage forest or
low, so I’m happy to think that β might be around zero, and be positive or negative. Forest
cover ranges from 0 to 100 so that suggests that β is very unlikely to be bigger than 0.1 or
smaller than -0.1. Perhaps β ∼ N(0, 0.12) is a good prior

I It looks to me like the intercept is very unlikely to be outside the range (-10, 10) so perhaps
α ∼ N(0, 52) is appropriate
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JAGS code
jags_code = '
model{

# Likelihood
for(i in 1:N) {

y[i] ~ dbin(p[i], N_exp[i])
logit(p[i]) <- alpha[alt[i]] + beta[alt[i]]* (x[i] - mean(x))

}
# Priors
for(j in 1:N_alt) {

alpha[j] ~ dnorm(mu_alpha, sigma_alpha^-2)
beta[j] ~ dnorm(mu_beta, sigma_beta^-2)

}
mu_alpha ~ dnorm(0, 5^-2)
mu_beta ~ dnorm(0, 0.1^-2)
sigma_alpha ~ dt(0, 5^-2, 1)T(0,)
sigma_beta ~ dt(0, 5^-2, 1)T(0,)

}
'
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Model fit - intercepts
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Model fit - Slopes
Altitude type: Low

Slope value
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Model fit - estimated mean proportions

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Altitude type: Low

% forest cover

E
st

im
at

ed
 p

ro
po

rt
on

20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Altitude type: Med

% forest cover

E
st

im
at

ed
 p

ro
po

rt
on

0 20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Altitude type: High

% forest cover

E
st

im
at

ed
 p

ro
po

rt
on

10 / 30



Type 2: Poisson HGLMs

I For a Poisson distribution there is no upper bound on the number of counts

I We just change the likelihood (to Poisson) and the link function (to log):

yi ∼ Po(λi ), log(λi ) = α + β(xi − x̄))

I We can now add our hierarchical layers into α and β, or. . .

I Another way we can add an extra layer is by giving log(λi ) a probability distribution
rather than setting it to a value

I This is a way of introducing over-dispersion, i.e. saying that the data are more
variable than that expected by a standard Poisson distribution with our existing
covariates
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An over-dispersed model

I The over-dispersed model looks like:

yi ∼ Po(λi ), log(λi ) ∼ N(α + β(xi − x̄), σ2)

where σ is the over-dispersion parameter

I We now need to estimate prior distributions for α, β, and σ

I We will use the SWT data again, but pretend that we didn’t know that they had
gone out N times looking for the birds
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JAGS code for OD Poisson

jags_code = '
model{

# Likelihood
for(i in 1:N) {

y[i] ~ dpois(exp(log_lambda[i]))
log_lambda[i] ~ dnorm(alpha + beta * (x[i] - mean(x)),

sigma^-2)
}
alpha ~ dnorm(0, 5^-2)
beta ~ dnorm(0, 0.1^-2)
sigma ~ dt(0, 5^-2, 1)T(0,)

}
'
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Model run
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Notes about OD Poisson model

I The way to think about OD models is via the data generating process.

I We could compare this model to one without over dispersion via DIC (or if time,
cross validation). We should also compute a posterior predictive distribution for full
comparison

I In general, the parameter values (i.e. alpha and beta) tend to be more uncertain
when you add in over dispersion

I Also in the data set is a variable called dur which represents how long they spent
looking for the birds. This could be added in as an offset via the likelihood:

y[i] ~ dpois(dur[i] * exp(log_lambda[i]))
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Type 3: t-distributed HGLMs

I How do Bayesians deal with outliers?

I A common view is that we should delete these observations before we run the
model, but what if we can’t find a reason for doing so

I A good Bayesian will include outliers as part of the model.

I One way of doing this is by switching from a normal distribution to a t-distribution
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Normal vs t
curve(dnorm, from = -5, to = 5)
curve(dt(x, df = 1), add = TRUE, col = 'red')
curve(dt(x, df = 4), add = TRUE, col = 'blue')
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Polluted data
I Suppose we had some data which looked like this:
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There are a few observations here which look a bit odd
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JAGS code for a t-model

jags_code = '
model{

# Likelihood
for(i in 1:N) {

y[i] ~ dt(alpha + beta * (x[i] - mean(x)),
sigma^-2, df[i])

df[i] ~ dcat(p)
}
alpha ~ dnorm(0, 1^-2)
beta ~ dnorm(0, 1^-2)
sigma ~ dt(0,1,1)T(0,)

}
'
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Fitting the model

jags_run = jags(data = list(N = N,
p = rep(1,10)/10,
y = y,
x = x),

parameters.to.save = c('alpha',
'beta',
'df'),

model.file = textConnection(jags_code))
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Output from the model
dfs = jags_run$BUGSoutput$median$df
pars = jags_run$BUGSoutput$mean
cols = rainbow(10)
plot(x, y, col = cols[dfs])
lines(x, as.numeric(pars$alpha) +

as.numeric(pars$beta)*(x - mean(x)))
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Prior distributions on the degrees of freedom

I Here I’ve set a prior distribution on the degrees of freedom parameter to be a
categorical distribution with probabilities 0.1 for df = 1, 2, . . . , 10

I Smaller values of df mean that a data point is more likely to be an outlier
I The categorical distribution automatically looks up the right df value for each

probability
I This model is impossible to fit in Stan, because it contains a discrete parameter
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Type 4: Ordinal data HGLMs

I Often we have a response variable which is ordinal, e.g. disagree, neutral, agree, etc
I There are lots of different (and complicated) ways to model such data
I Perhaps the easiest is to think of it as a hierarchical model with ‘cut-points’ on a

latent linear regression
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An ordinal model example

I Suppose yi = {disagree, neutral, agree} and we make it dependent on a latent
continuous variable zi , so that :

yi =


agree if zi > 0.5
neutral if − 0.5 < zi ≤ 0.5
disagree if zi ≤ −0.5

I We then give zi a prior distribution, e.g. N(β0 + β1xi , σ
2)
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Fitting ordinal models in JAGS

jags_code = '
model{

# Likelihood
for(i in 1:N) {

z[i] ~ dnorm(alpha + beta * (x[i] - mean(x)),
sigma^-2)

y[i] ~ dinterval(z[i], cuts)
}
alpha ~ dnorm(0, 100^-2)
beta ~ dnorm(0, 100^-2)
sigma ~ dt(0, 10^-2, 1)T(0, )

}
'
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Simulating some example data

N = 100
alpha = -1
beta = 0.2
sigma = 0.51
set.seed(123)
x = runif(N, 0, 10)
cuts = c(-0.5, 0.5)
z = rnorm(N, alpha + beta * (x - mean(x)), sigma)
y = findInterval(z, cuts)
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Simulated data - plot

plot(x, z, col = y + 1)
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Fitting in JAGS - needs initial values
jags_inits = function() {

z = runif(N, -0.5, 0.5)
z[y==0] = runif(sum(y==0), -1, -0.5)
z[y==2] = runif(sum(y==2), 0.5, 1)
return(list(z = z))

}
jags_run = jags(data = list(N = N,

y = y,
x = x,
cuts = cuts),

inits = jags_inits,
parameters.to.save = c('alpha',

'beta',
'sigma'),

model.file = textConnection(jags_code))
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Output
print(jags_run)

## Inference for Bugs model at "7", fit using jags,
## 3 chains, each with 2000 iterations (first 1000 discarded)
## n.sims = 3000 iterations saved
## mu.vect sd.vect 2.5% 25% 50% 75% 97.5% Rhat n.eff
## alpha -1.093 0.181 -1.531 -1.188 -1.068 -0.962 -0.815 1.052 46
## beta 0.221 0.052 0.135 0.186 0.215 0.250 0.345 1.044 51
## sigma 0.559 0.128 0.365 0.468 0.538 0.627 0.859 1.027 81
## deviance 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 1
##
## For each parameter, n.eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor (at convergence, Rhat=1).
##
## DIC info (using the rule, pD = var(deviance)/2)
## pD = 0.0 and DIC = 0.0
## DIC is an estimate of expected predictive error (lower deviance is better).
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Summary

I We have now seen a number of different types of hierarchical GLM
I Many of the ideas of hierarchical linear models transfer over, but we can explore

richer behaviour with hierarchical GLMs
I These have all used the normal, binomial or Poisson distribution at the top level,

and have allowed for over-dispersion, robustness, and ordinal data, to name just
three
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