
Class 6: Hierarchical generalised linear models

Andrew Parnell
andrew.parnell@mu.ie

PRESS RECORD

1 / 30

Learning outcomes:

I Understand the modelling implications of moving from linear to hierarchical
generalised linear models (HGLMs)

I Know some of the different versions of Hierarchical GLMs
I Be able to fit HGLMS in JAGS
I Be able to expand and summarise fitted models

2 / 30

From LMs to HGLMs

I Reminder: a hierarchical model has prior distributions on the parameters which
depend on further parameters

I A generalised linear model is one in which the probability distribution is not normal,
and a link function serves to match the mean of the distribution to the covariates

I Within this framework, we can borrow the ideas from the previous class to create
hierarchical GLMs

I We will go through four examples: binomial-logit, Poisson, robust regression, and
ordinal regression

3 / 30

Example 1: binomial-logit

I In class 2, we met the Binomial-logit model for binary data:

yi ∼ Bin(1, pi), logit(pi) = α + β(xi − x̄)

Here logit(pi) is the link function equal to log
(

pi
1−pi

)
and transforms the bounded

probabilities into an unbounded space

I If we have non-binary data we just change the likelihood:

yi ∼ Bin(Ni , pi), logit(pi) = α + β(xi − x̄)

I In a hierarchical version of this model, we vary the latent parameters α and β and
give them prior distributions

4 / 30

The swiss willow tit data

swt = read.csv('../data/swt.csv', stringsAsFactors = TRUE)
head(swt)

rep.1 rep.2 rep.3 c.2 c.3 elev forest dur.1 dur.2 dur.3 length alt
1 0 0 0 0 0 420 3 240 58 73 6.2 Low
2 0 0 0 0 0 450 21 160 39 62 5.1 Low
3 0 0 0 0 0 1050 32 120 47 74 4.3 Med
4 0 0 0 0 0 1110 35 180 44 71 5.4 Med
5 0 0 0 0 0 510 2 210 56 73 3.6 Low
6 0 0 0 0 0 630 60 150 56 73 6.1 Low

5 / 30

A hierarchical model
I Suppose we want to fit a model on the sum yi = rep.1 + rep.2 + rep.3:

yi ∼ Bin(Ni , pi), logit(pi) = αaltitudei
+ βaltitudei

(xi − x̄)

where xi is the percentage of forest cover
I What prior distributions should we use for α and β?
I Useful side note: A value of 10 on the logit scale leads to a probability of about 1, and a

value of -10 leads to a probability of about 0 (you can test this by typing inv.logit(10))
so I wouldn’t expect the value of logit(pi) to ever get much bigger than 10 or smaller than
-10

I I have no idea whether we are more likely to find these birds in high percentage forest or
low, so I’m happy to think that β might be around zero, and be positive or negative. Forest
cover ranges from 0 to 100 so that suggests that β is very unlikely to be bigger than 0.1 or
smaller than -0.1. Perhaps β ∼ N(0, 0.12) is a good prior

I It looks to me like the intercept is very unlikely to be outside the range (-10, 10) so perhaps
α ∼ N(0, 52) is appropriate

6 / 30

JAGS code
jags_code = '
model{

Likelihood
for(i in 1:N) {

y[i] ~ dbin(p[i], N_exp[i])
logit(p[i]) <- alpha[alt[i]] + beta[alt[i]]* (x[i] - mean(x))

}
Priors
for(j in 1:N_alt) {

alpha[j] ~ dnorm(mu_alpha, sigma_alpha^-2)
beta[j] ~ dnorm(mu_beta, sigma_beta^-2)

}
mu_alpha ~ dnorm(0, 5^-2)
mu_beta ~ dnorm(0, 0.1^-2)
sigma_alpha ~ dt(0, 5^-2, 1)T(0,)
sigma_beta ~ dt(0, 5^-2, 1)T(0,)

}
'

7 / 30

Model fit - intercepts
Altitude type: Low

Intercept value

F
re

qu
en

cy

−4 −3 −2 −1 0 1

0
10

0
20

0
30

0
Altitude type: Med

Intercept value

F
re

qu
en

cy

−4 −3 −2 −1 0 1

0
50

10
0

15
0

20
0

25
0

30
0

Altitude type: High

Intercept value

F
re

qu
en

cy

−4 −3 −2 −1 0 1

0
50

10
0

15
0

20
0

25
0

30
0

8 / 30

Model fit - Slopes
Altitude type: Low

Slope value

F
re

qu
en

cy

−0.02 0.02 0.04 0.06 0.08 0.10

0
10

0
20

0
30

0
40

0
50

0
Altitude type: Med

Slope value

F
re

qu
en

cy

−0.02 0.02 0.04 0.06 0.08 0.10

0
10

0
20

0
30

0

Altitude type: High

Slope value

F
re

qu
en

cy

−0.02 0.02 0.04 0.06 0.08 0.10

0
50

10
0

15
0

20
0

25
0

9 / 30

Model fit - estimated mean proportions

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Altitude type: Low

% forest cover

E
st

im
at

ed
 p

ro
po

rt
on

20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Altitude type: Med

% forest cover

E
st

im
at

ed
 p

ro
po

rt
on

0 20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Altitude type: High

% forest cover

E
st

im
at

ed
 p

ro
po

rt
on

10 / 30

Type 2: Poisson HGLMs

I For a Poisson distribution there is no upper bound on the number of counts

I We just change the likelihood (to Poisson) and the link function (to log):

yi ∼ Po(λi), log(λi) = α + β(xi − x̄))

I We can now add our hierarchical layers into α and β, or. . .

I Another way we can add an extra layer is by giving log(λi) a probability distribution
rather than setting it to a value

I This is a way of introducing over-dispersion, i.e. saying that the data are more
variable than that expected by a standard Poisson distribution with our existing
covariates

11 / 30

An over-dispersed model

I The over-dispersed model looks like:

yi ∼ Po(λi), log(λi) ∼ N(α + β(xi − x̄), σ2)

where σ is the over-dispersion parameter

I We now need to estimate prior distributions for α, β, and σ

I We will use the SWT data again, but pretend that we didn’t know that they had
gone out N times looking for the birds

12 / 30

JAGS code for OD Poisson

jags_code = '
model{

Likelihood
for(i in 1:N) {

y[i] ~ dpois(exp(log_lambda[i]))
log_lambda[i] ~ dnorm(alpha + beta * (x[i] - mean(x)),

sigma^-2)
}
alpha ~ dnorm(0, 5^-2)
beta ~ dnorm(0, 0.1^-2)
sigma ~ dt(0, 5^-2, 1)T(0,)

}
'

13 / 30

Model run
alpha

Parameter value

F
re

qu
en

cy

−1.6 −1.4 −1.2 −1.0 −0.8 −0.6

0
50

10
0

15
0

beta

Parameter value

F
re

qu
en

cy

0.015 0.020 0.025 0.030 0.035 0.040

0
50

10
0

15
0

sigma

Parameter value

F
re

qu
en

cy

0.6 0.8 1.0 1.2 1.4 1.6 1.8

0
50

10
0

15
0

14 / 30

Notes about OD Poisson model

I The way to think about OD models is via the data generating process.

I We could compare this model to one without over dispersion via DIC (or if time,
cross validation). We should also compute a posterior predictive distribution for full
comparison

I In general, the parameter values (i.e. alpha and beta) tend to be more uncertain
when you add in over dispersion

I Also in the data set is a variable called dur which represents how long they spent
looking for the birds. This could be added in as an offset via the likelihood:

y[i] ~ dpois(dur[i] * exp(log_lambda[i]))

15 / 30

Type 3: t-distributed HGLMs

I How do Bayesians deal with outliers?

I A common view is that we should delete these observations before we run the
model, but what if we can’t find a reason for doing so

I A good Bayesian will include outliers as part of the model.

I One way of doing this is by switching from a normal distribution to a t-distribution

16 / 30

Normal vs t
curve(dnorm, from = -5, to = 5)
curve(dt(x, df = 1), add = TRUE, col = 'red')
curve(dt(x, df = 4), add = TRUE, col = 'blue')

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

x

dn
or

m
(x

)

17 / 30

Polluted data
I Suppose we had some data which looked like this:

0.0 0.2 0.4 0.6 0.8 1.0

−
2

0
2

4
6

x

y

There are a few observations here which look a bit odd
18 / 30

JAGS code for a t-model

jags_code = '
model{

Likelihood
for(i in 1:N) {

y[i] ~ dt(alpha + beta * (x[i] - mean(x)),
sigma^-2, df[i])

df[i] ~ dcat(p)
}
alpha ~ dnorm(0, 1^-2)
beta ~ dnorm(0, 1^-2)
sigma ~ dt(0,1,1)T(0,)

}
'

19 / 30

Fitting the model

jags_run = jags(data = list(N = N,
p = rep(1,10)/10,
y = y,
x = x),

parameters.to.save = c('alpha',
'beta',
'df'),

model.file = textConnection(jags_code))

20 / 30

Output from the model
dfs = jags_run$BUGSoutput$median$df
pars = jags_run$BUGSoutput$mean
cols = rainbow(10)
plot(x, y, col = cols[dfs])
lines(x, as.numeric(pars$alpha) +

as.numeric(pars$beta)*(x - mean(x)))

0.0 0.2 0.4 0.6 0.8 1.0

−
2

0
2

4
6

x

y

21 / 30

Prior distributions on the degrees of freedom

I Here I’ve set a prior distribution on the degrees of freedom parameter to be a
categorical distribution with probabilities 0.1 for df = 1, 2, . . . , 10

I Smaller values of df mean that a data point is more likely to be an outlier
I The categorical distribution automatically looks up the right df value for each

probability
I This model is impossible to fit in Stan, because it contains a discrete parameter

22 / 30

Type 4: Ordinal data HGLMs

I Often we have a response variable which is ordinal, e.g. disagree, neutral, agree, etc
I There are lots of different (and complicated) ways to model such data
I Perhaps the easiest is to think of it as a hierarchical model with ‘cut-points’ on a

latent linear regression

23 / 30

An ordinal model example

I Suppose yi = {disagree, neutral, agree} and we make it dependent on a latent
continuous variable zi , so that :

yi =


agree if zi > 0.5
neutral if − 0.5 < zi ≤ 0.5
disagree if zi ≤ −0.5

I We then give zi a prior distribution, e.g. N(β0 + β1xi , σ
2)

24 / 30

Fitting ordinal models in JAGS

jags_code = '
model{

Likelihood
for(i in 1:N) {

z[i] ~ dnorm(alpha + beta * (x[i] - mean(x)),
sigma^-2)

y[i] ~ dinterval(z[i], cuts)
}
alpha ~ dnorm(0, 100^-2)
beta ~ dnorm(0, 100^-2)
sigma ~ dt(0, 10^-2, 1)T(0,)

}
'

25 / 30

Simulating some example data

N = 100
alpha = -1
beta = 0.2
sigma = 0.51
set.seed(123)
x = runif(N, 0, 10)
cuts = c(-0.5, 0.5)
z = rnorm(N, alpha + beta * (x - mean(x)), sigma)
y = findInterval(z, cuts)

26 / 30

Simulated data - plot

plot(x, z, col = y + 1)

0 2 4 6 8 10

−
2

−
1

0
1

x

z

27 / 30

Fitting in JAGS - needs initial values
jags_inits = function() {

z = runif(N, -0.5, 0.5)
z[y==0] = runif(sum(y==0), -1, -0.5)
z[y==2] = runif(sum(y==2), 0.5, 1)
return(list(z = z))

}
jags_run = jags(data = list(N = N,

y = y,
x = x,
cuts = cuts),

inits = jags_inits,
parameters.to.save = c('alpha',

'beta',
'sigma'),

model.file = textConnection(jags_code))

28 / 30

Output
print(jags_run)

Inference for Bugs model at "7", fit using jags,
3 chains, each with 2000 iterations (first 1000 discarded)
n.sims = 3000 iterations saved
mu.vect sd.vect 2.5% 25% 50% 75% 97.5% Rhat n.eff
alpha -1.093 0.181 -1.531 -1.188 -1.068 -0.962 -0.815 1.052 46
beta 0.221 0.052 0.135 0.186 0.215 0.250 0.345 1.044 51
sigma 0.559 0.128 0.365 0.468 0.538 0.627 0.859 1.027 81
deviance 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 1
##
For each parameter, n.eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor (at convergence, Rhat=1).
##
DIC info (using the rule, pD = var(deviance)/2)
pD = 0.0 and DIC = 0.0
DIC is an estimate of expected predictive error (lower deviance is better).

29 / 30

Summary

I We have now seen a number of different types of hierarchical GLM
I Many of the ideas of hierarchical linear models transfer over, but we can explore

richer behaviour with hierarchical GLMs
I These have all used the normal, binomial or Poisson distribution at the top level,

and have allowed for over-dispersion, robustness, and ordinal data, to name just
three

30 / 30

