Class 6: Hierarchical generalised linear models

Andrew Parnell
andrew.parnell@mu.ie

Maynooth
University

National University
of Ireland Maynooth

PRESS RECORD

1/30

Learning outcomes:

» Understand the modelling implications of moving from linear to hierarchical
generalised linear models (HGLMs)

» Know some of the different versions of Hierarchical GLMs

» Be able to fit HGLMS in JAGS

» Be able to expand and summarise fitted models

2/30

From LMs to HGLMs

» Reminder: a hierarchical model has prior distributions on the parameters which
depend on further parameters

> A generalised linear model is one in which the probability distribution is not normal,
and a link function serves to match the mean of the distribution to the covariates

» Within this framework, we can borrow the ideas from the previous class to create
hierarchical GLMs

» We will go through four examples: binomial-logit, Poisson, robust regression, and
ordinal regression

3/30

Example 1: binomial-logit

» In class 2, we met the Binomial-logit model for binary data:

yi ~ Bin(1, p;), logit(p;) = a + B(x; — X)

Pi
1—p;

Here logit(p;) is the link function equal to Iog() and transforms the bounded

probabilities into an unbounded space

» If we have non-binary data we just change the likelihood:
yi ~ Bin(Nj, p;), logit(pi) = a + B(xi — X)

» In a hierarchical version of this model, we vary the latent parameters and 8 and
give them prior distributions

4/30

The swiss willow tit data

swt = read.csv('
head (swt)

rep.l rep.
0

##
##
##
##
#i#

DO W N
oo ooo
ocooooconN

../data/swt.csv', stringsAsFactors = TRUE)

rep.3 c.
0

oo ooo

2
]
0
0
0
0
0

c.3
]
0
0
0
0
0

elev forest dur.l dur.2 dur.3 length

420
450
1050
1110
510
630

3
21
32
35

2
60

240
160
120
180
210
150

58
39
47
44
56
56

73
62
74
71
73
73

6.

o wo s o
RO W RN

Low
Low
Med
Med

Low

5/30

A hierarchical model

» Suppose we want to fit a model on the sum y; = rep.1 + rep.2 + rep.3:

yi ~ Bin(Ni, pi), logit(pi) = aititude, + Paltitude, (Xi = X)
where x; is the percentage of forest cover
» What prior distributions should we use for « and 87

» Useful side note: A value of 10 on the logit scale leads to a probability of about 1, and a
value of -10 leads to a probability of about 0 (you can test this by typing inv.logit (10))
so | wouldn’t expect the value of logit(p;) to ever get much bigger than 10 or smaller than
-10

» | have no idea whether we are more likely to find these birds in high percentage forest or
low, so I'm happy to think that 8 might be around zero, and be positive or negative. Forest
cover ranges from 0 to 100 so that suggests that (3 is very unlikely to be bigger than 0.1 or
smaller than -0.1. Perhaps 3 ~ N(0,0.1%) is a good prior

> It looks to me like the intercept is very unlikely to be outside the range (-10, 10) so perhaps
a ~ N(0,52) is appropriate

6/30

JAGS code
jags_code = '
model{
Likelihood
for(i in 1:N) {
y[il ~ dbin(p[il, N_exp[il)
logit(p[i]l) <- alphalalt[i]] + betalalt[il]* (x[i] - mean(x))
}
Priors
for(j in 1:N_alt) {
alphal[j] ~ dnorm(mu_alpha, sigma_alpha™-2)
betal[j] ~ dnorm(mu_beta, sigma_beta™-2)
}
mu_alpha ~ dnorm(0, 57-2)
mu_beta ~ dnorm(0, 0.17-2)
sigma_alpha ~ dt(0, 57-2, 1)T(0,)
sigma_beta ~ dt(0, 57-2, 1)T(0,)

7/30

Model fit - intercepts

Altitude type: Low Altitude type: Med Altitude type: High
o
S 4
&
o
8 4
® o
3
o <
S 4
@
o
2
&
o
8
&
)
g -
3 o g g
s 3+ £ g o
s & & s g |
3 El El
o =3 =3 Ll
o o o o
[T 97 fin
o
8
o =
s =
e
o
o | 3
3
o - o o
T T T T T 1 T T T T T 1 T T T T T 1
-4 -3 -2 -1 0 1 -4 -3 -2 -1 0 1 -4 -3 -2 -1 0 1
Intercept value Intercept value Intercept value

8/30

Model fit - Slopes

Altitude type: Low Altitude type: Med Altitude type: High
o
S -
© _
2
- 3 -
«
o
8 4
o @
S
s Q
8 4
<
> 8- I » >
g ° 2 84 2 8
5] T « g =
3 S S
=3 =3 =z
L L o
[[[
o
<7 8
=
=)
8
E1
=]
& 8
o - o - o -
r T T T T T 1 r T T T T T 1 r T T T T T 1
-0.02 0.02 0.04 006 0.08 0.10 -0.02 0.02 0.04 0.06 0.08 0.10 -0.02 0.02 0.04 006 0.08 0.10
Slope value Slope value Slope value

9/30

Model fit - estimated mean proportions

Altitude type: Low Altitude type: Med Altitude type: High

S 4 ° o S - o om @woo oo o o S -

© © o

o 7 o 7 o 7

° ¢
< < c
g <o | k] g 9o |
s © s g ©
2 2 <3
] e]
e = = ooo ® o
2 2 2
< < o
£ <« £ E <«
@ o 7 @ @ o 7
i i i}
o o o o

N N N

5] 5] (=]

2 - evummmm cweproco @ WO 000 O 2 - @000 000ow® W0 @@ © 00 © 2 H@wo o0 0o o ° °

T T T T T T T T T T T T T T T T
0 20 40 60 80 100 20 40 60 80 100 0 20 40 60 80
% forest cover % forest cover % forest cover

10/30

Type 2: Poisson HGLMs

| 2

>

For a Poisson distribution there is no upper bound on the number of counts

We just change the likelihood (to Poisson) and the link function (to log):

yi ~ Po()\;),log(\;) = a + B(x; — X))

We can now add our hierarchical layers into a and 3, or. ..

Another way we can add an extra layer is by giving log();) a probability distribution
rather than setting it to a value

This is a way of introducing over-dispersion, i.e. saying that the data are more
variable than that expected by a standard Poisson distribution with our existing
covariates

11/30

An over-dispersed model

» The over-dispersed model looks like:
yi ~ Po(\),log(A\i) ~ N(a + B(x; — X), 02)
where o is the over-dispersion parameter

» We now need to estimate prior distributions for «, 3, and o

» We will use the SWT data again, but pretend that we didn’t know that they had
gone out N times looking for the birds

12/30

JAGS code for OD Poisson

jags_code = '
model{
Likelihood
for(i in 1:N) {
y[i]l ~ dpois(exp(log_lambdalil))
log_lambda[i] ~ dnorm(alpha + beta * (x[i] - mean(x)),
sigma~-2)
}
alpha ~ dnorm(0, 57-2)
beta ~ dnorm(0, 0.17-2)
sigma ~ dt(0, 57-2, 1)T(0,)

13/30

Model run

alpha beta sigma

Frequency
Frequency
1
Frequency

50
50

T T T T T 1 T T T T T 1 T T T T T T 1
-1.6 -14 -12 -10 -08 -06 0.015 0.020 0.025 0.030 0.035 0.040 0.6 0.8 1.0 12 14 16 18

Parameter value Parameter value Parameter value

14 /30

Notes about OD Poisson model

» The way to think about OD models is via the data generating process.

» We could compare this model to one without over dispersion via DIC (or if time,
cross validation). We should also compute a posterior predictive distribution for full
comparison

» In general, the parameter values (i.e. alpha and beta) tend to be more uncertain
when you add in over dispersion

P> Also in the data set is a variable called dur which represents how long they spent
looking for the birds. This could be added in as an offset via the likelihood:

y[i] ~ dpois(dur[i] * exp(log_lambdali]))

15/30

Type 3: t-distributed HGLMs

» How do Bayesians deal with outliers?

» A common view is that we should delete these observations before we run the
model, but what if we can't find a reason for doing so

> A good Bayesian will include outliers as part of the model.

» One way of doing this is by switching from a normal distribution to a t-distribution

16 /30

Normal vs t
curve(dnorm, from = -5, to = 5)
curve(dt(x, df 1), add = TRUE, col
curve(dt(x, df = 4), add = TRUE, col

'red')
'"blue')

<
o

dnorm(x)

0.1

17/30

Polluted data

» Suppose we had some data which looked like this:

© - o o
o)

< o

o

°© o
© o
« o © o® o o © o
> — (@) (]
08 5P 9 °o o o o o ® o
o o o ° 5% o
o [¢] [e] o 000 o
o o O @ O O 0o 00 o o
o o o
o =) QP o° o
o o
[ee] oo 9 o
o o o°
o
[e) [¢]

o
| o

I I I I I I

0.0 0.2 0.4 0.6 0.8 1.0

X

There are a few observations here which look a bit odd

18/30

JAGS code for a t-model

jags_code = '
modelq{
Likelihood
for(i in 1:N) {
y[i] ~ dt(alpha + beta * (x[i] - mean(x)),
sigma~-2, df[i])
df [i] ~ dcat(p)
}
alpha ~ dnorm(0, 17-2)
beta ~ dnorm(0, 1°-2)
sigma ~ dt(0,1,1)T(0,)

19/30

Fitting the model

jags_run = jags(data = list(N = N,
p = rep(1,10)/10,
y=75,
X = x),
parameters.to.save = c('alpha',
'beta’,
'af'),

model.file = textConnection(jags_code))

20/30

Qutnit from the model

dfs = jags_run$BUGSoutput$median$df

pars = jags_run$BUGSoutput$mean

cols = rainbow(10)

plot(x, y, col = cols[dfs])

lines(x, as.numeric(pars$alpha) +
as.numeric(pars$beta)*(x - mean(x)))

0.0 0.2 0.4 0.6 0.8 1.0

21/30

Prior distributions on the degrees of freedom

P> Here I've set a prior distribution on the degrees of freedom parameter to be a
categorical distribution with probabilities 0.1 for df =1, 2, ..., 10

» Smaller values of df mean that a data point is more likely to be an outlier

» The categorical distribution automatically looks up the right df value for each
probability

» This model is impossible to fit in Stan, because it contains a discrete parameter

22/30

Type 4: Ordinal data HGLMs

» Often we have a response variable which is ordinal, e.g. disagree, neutral, agree, etc

» There are lots of different (and complicated) ways to model such data

P> Perhaps the easiest is to think of it as a hierarchical model with ‘cut-points’ on a
latent linear regression

23/30

An ordinal model example

» Suppose y; = {disagree, neutral, agree} and we make it dependent on a latent
continuous variable z;, so that :

agree if zz>0.5
yi =14 neutral if —05<z <05
disagree if z; < —0.5

» We then give z a prior distribution, e.g. N(By + B1x;,02)

24/30

Fitting ordinal models in JAGS

jags_code = '
model{
Likelihood
for(i in 1:N) {
z[i] ~ dnorm(alpha + beta * (x[i] - mean(x)),
sigma™-2)
y[i] ~ dinterval(z[i], cuts)
}
alpha ~ dnorm(0, 1007-2)
beta ~ dnorm(0, 1007-2)
sigma ~ dt(0, 107-2, 1)T(0,)

25/30

Simulating some example data

N = 100
alpha = -1
beta = 0.2
sigma = 0.51

set.seed(123)

x = runif (N, 0, 10)

cuts = c(-0.5, 0.5)

z = rnorm(N, alpha + beta * (x - mean(x)), sigma)
y = findInterval(z, cuts)

26 /30

Simulated data - plot

plot(x, z, col =y + 1)

Anl o
o
o
o 8 o
o % o oo & o
o o
S o o o° & o
o 00
o
o o 00 o
N - _| ° o o&)o o Oo o o
| 1) 0@) o &)
o o 00
o
e © [} 00 o °
[} ° o IS
o
~ 000 o o °©
) Ooo o
° o
o
T T T T T
0 2 4 6 8 10

27/30

Fitting in JAGS - needs initial values

jags_inits = function() {
z = runif (N, -0.5, 0.5)
z[y==0] = runif(sum(y==0), -1, -0.5)
z[y==2] = runif(sum(y==2), 0.5, 1)
return(list(z = z))

}

jags_run = jags(data = 1list(N = N,
y =,
X = X,

cuts = cuts),
inits = jags_inits,
parameters.to.save = c('alpha',
'beta’,
'sigma'),
model.file = textConnection(jags_code))

28/30

Output

print(jags_run)

##
#i#t
##
#i#
##
##
##
#it
##
#i#
##
##
#i#
##
#i#

Inference for Bugs model at "7", fit using jags,

3 chains, each with 2000 iterations (first 1000 discarded)
n.sims = 3000 iterations saved

mu.vect sd.vect 2.5% 25% 50% 75% 97.5% Rhat n.eff
alpha -1.093 0.181 -1.531 -1.188 -1.068 -0.962 -0.815 1.052 46
beta 0.221 0.052 0.135 0.186 0.215 0.250 0.345 1.044 51
sigma 0.559 0.128 0.365 0.468 0.538 0.627 0.859 1.027 81
deviance 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 1
For each parameter, n.eff is a crude measure of effective sample size,

and Rhat is the potential scale reduction factor (at convergence, Rhat=1).

DIC info (using the rule, pD = var(deviance)/2)
pD = 0.0 and DIC = 0.0
DIC is an estimate of expected predictive error (lower deviance is better).

29/30

Summary

> We have now seen a number of different types of hierarchical GLM

> Many of the ideas of hierarchical linear models transfer over, but we can explore
richer behaviour with hierarchical GLMs

» These have all used the normal, binomial or Poisson distribution at the top level,
and have allowed for over-dispersion, robustness, and ordinal data, to name just
three

30/30

