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Learning outcomes:

I Understand how to add in multiple layers to a hierarchical model
I Follow a detailed example of building a model
I Be able to work with missing data in JAGS
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Some new terminology

I Most of the models we have covered so far contain only one hidden or latent set of
parameters

I For example, the data y may depend on a parameter β, which itself depends on a
parameter θ. θ is given a prior distribution

I We say that the data are at the ‘top level’, the parameter β is a latent parameter
at the second level, and the hyper-parameter θ is also a latent parameter at the
third level

I We say that the prior distribution on β is conditional on θ, whilst the prior
distribution (if it just involves numbers) is a marginal prior distribution
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What is a multi-layer model?

I A multi-layer model is one where have many (usually more than 2 or 3) layers of
parameters conditional on each other

I It’s very straightforward to add in these extra layers in JAGS/Stan
I The question is whether they are necessary or not, and how much the data can tell

us about them
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Writing the same model in different ways
I The model on the previous slides has a different intercept and slope for each

ethnicity group, with the information about them tied together through the prior
distributions on them

I The likelihood was written as:

y[i] ~ dnorm(alpha[eth[i]] +
beta[eth[i]]*(x[i] - mean(x)),

sigma^-2)

which in maths can be written as:

yi ∼ N(αethi
+ βethi

xi , σ
2)

where ethi takes the values 1, 2, 3, or 4

I Remember, yi is the log-earnings of individual i where i = 1, . . . ,N

5 / 29



Re-writing the model

I Commonly you’ll see y here re-defined as yij where j = 1, .., 4 represents ethnicity,
and i = 1, . . . ,Nj is the number of individuals with ethnicity j

I The likelihood can then be written as:

yij ∼ N(αj + βjxij , σ
2)

I Note that this is exactly the same model, just re-written slightly differently. In fact,
this latter model is much harder to write out in JAGS/Stan code
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Fixed vs random effect models

I Thinking about this model in more detail

yij ∼ N(αj + βjxij , σ
2)

I If the αj and βj parameters are all given independent prior distributions, e.g.
αj ∼ N(0, 100) or similar, then this is considered a fixed effects model

I If the αj and βj are given prior distributions that tie the values together, e.g.
αj ∼ N(µα, σ

2
α), then this is often called a random effects model

I (In fact, nobody can agree on what a fixed or random effects model actually is)
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Mixed effects vs hierarchical models

I The hierarchical models we have been studying all use the random effects approach
wherever possible

I The big advantage of using this approach is that we get to borrow strength
between the different groups (here eth, but it could be anything)

I Whenever we have a categorical covariate we should always be putting a
constraining/tying prior distribution on them, and looking at how the effects vary
between the groups

I Mathematically you can write out the hierarchicaly estimated intercepts of a group
(αj) as a weighted average of the group intercept means from the data (ᾱj) and
the overall mean of the entire data set (µ) where the weights are dependent on the
group and overall variance and sample sizes.

I Because of the weighted nature of the estimate this is often called partial pooling
or shrinkage
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Example: multi-layer earnings data

I We will now go through and build a much more complicated model for the earnings
data, taken from the Gelman and Hill book, using only weak priors

I We can generate data from these models (either using the prior or the posterior)
I Our goal is to explore the factors which explain earnings. We have variables on

height, age, and ethnicity.
I If we first plot the data
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Transformations

I From the left-hand plot there seem to be quite a few extreme observations, and
there’s a possibility that the relationship between height and earnings is non-linear

I The right-hand plot seems to have stabilised most of the extreme observations, and
perhaps linearity is more appropriate

I Notice that a linear model implies:

yi = α + βxi + εi

whilst the log-linear model implies:

yi = exp(α + βxi + εi ) = eα × eβxi × eε
i

so the coefficients, once exponentiated, have multiplicative effects that are
relatively easy to interpret
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Fitting the first model

I If we fit a model with just height (mean centered) we get the following JAGS output
## Inference for Bugs model at "4", fit using jags,
## 3 chains, each with 2000 iterations (first 1000 discarded)
## n.sims = 3000 iterations saved
## mu.vect sd.vect 2.5% 25% 50% 75% 97.5% Rhat
## alpha 9.737 0.028 9.683 9.718 9.737 9.756 9.793 1.001
## beta_height 0.023 0.003 0.017 0.021 0.022 0.024 0.028 1.001
## sigma 0.908 0.020 0.870 0.894 0.908 0.921 0.949 1.002
## deviance 2798.573 2.533 2795.735 2796.686 2797.909 2799.654 2805.416 1.002
## n.eff
## alpha 3000
## beta_height 3000
## sigma 1800
## deviance 3000
##
## For each parameter, n.eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor (at convergence, Rhat=1).
##
## DIC info (using the rule, pD = var(deviance)/2)
## pD = 3.2 and DIC = 2801.8
## DIC is an estimate of expected predictive error (lower deviance is better).
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Interpreting the parameters

I These parameters are directly interpretable:
I The mean of the log earnings at the mean height is about 9.737, which is about 17k

on the original scale
I We can also get e.g. a 95% confidence interval using the JAGS output. From 16000

to 18000
I For every extra cm so you gain 0.0226 on the log scale, i.e. an 2.28% gain in income
I From the posterior of σ, we can guess that about 68% of predictions will be within

0.908 on the log scale or within a factor of about 2.48 of the prediction

I Interpretation for the intercept would have been harder had we not mean-centered
the height variable

I The DIC is 2801.78 with 3.21 effective parameters
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Improving the model
I Now suppose we fit a model with a random intercept for ethnicity

jags_code = '
model{

# Likelihood
for(i in 1:N) {

log_earn[i] ~ dnorm(alpha_eth[eth[i]] +
beta_height*(height[i] - mean(height)),
sigma^-2)

}
# Priors
for(j in 1:N_eth) {

alpha_eth[j] ~ dnorm(mu_eth, sigma_eth^-2)
}
beta_height ~ dnorm(0, 0.1^-2)
mu_eth ~ dnorm(11, 2^-2)
sigma_eth ~ dt(0, 5^-2, 1)T(0,)
sigma ~ dt(0, 5^-2, 1)T(0,)

}
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Improving the model 2
## Inference for Bugs model at "5", fit using jags,
## 3 chains, each with 2000 iterations (first 1000 discarded)
## n.sims = 3000 iterations saved
## mu.vect sd.vect 2.5% 25% 50% 75% 97.5%
## alpha_eth[1] 9.683 0.075 9.525 9.635 9.691 9.733 9.817
## alpha_eth[2] 9.660 0.094 9.451 9.603 9.677 9.725 9.818
## alpha_eth[3] 9.748 0.030 9.688 9.728 9.748 9.768 9.809
## alpha_eth[4] 9.749 0.122 9.520 9.683 9.736 9.807 10.036
## beta_height 0.022 0.003 0.017 0.020 0.022 0.024 0.028
## mu_eth 9.717 0.155 9.430 9.667 9.718 9.759 10.036
## sigma 0.907 0.020 0.870 0.894 0.907 0.920 0.948
## deviance 2797.856 3.059 2793.661 2795.749 2797.230 2799.427 2805.381
## Rhat n.eff
## alpha_eth[1] 1.001 3000
## alpha_eth[2] 1.002 1900
## alpha_eth[3] 1.001 3000
## alpha_eth[4] 1.007 380
## beta_height 1.001 3000
## mu_eth 1.094 1100
## sigma 1.002 1500
## deviance 1.001 3000
##
## For each parameter, n.eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor (at convergence, Rhat=1).
##
## DIC info (using the rule, pD = var(deviance)/2)
## pD = 4.7 and DIC = 2802.5
## DIC is an estimate of expected predictive error (lower deviance is better).
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Interpreting the output

I The parameters α and βheight haven’t changed much in the mean
I The 95% confidence interval for α has increased: 12000 to 23000
I The DIC is 2802.54 with 4.68 effective parameters. Pretty much the same as above
I We also have estimates for each ethnicity, none of these have a strong effect away

from zero
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Now an interaction model

jags_code = '
model{

# Likelihood
for(i in 1:N) {

log_earn[i] ~ dnorm(alpha_eth[eth[i]] +
beta_height[eth[i]]*(height[i] - mean(height)),
sigma^-2)

}
# Priors
for(j in 1:N_eth) {

alpha_eth[j] ~ dnorm(mu_eth, sigma_eth^-2)
beta_height[j] ~ dnorm(mu_beta_height, sigma_height^-2)

}
mu_beta_height ~ dnorm(0, 0.1^-2)
mu_eth ~ dnorm(11, 2^-2)
sigma_eth ~ dt(0, 5^-2 ,1)T(0,)
sigma_height ~ dt(0, 1, 1)T(0,)
sigma ~ dt(0, 5^-2, 1)T(0,)

}
'
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Interaction model results
## Inference for Bugs model at "6", fit using jags,
## 3 chains, each with 2000 iterations (first 1000 discarded)
## n.sims = 3000 iterations saved
## mu.vect sd.vect 2.5% 25% 50% 75% 97.5%
## alpha_eth[1] 9.676 0.079 9.506 9.629 9.685 9.730 9.802
## alpha_eth[2] 9.644 0.102 9.418 9.579 9.660 9.719 9.796
## alpha_eth[3] 9.748 0.030 9.689 9.727 9.747 9.769 9.807
## alpha_eth[4] 9.730 0.124 9.479 9.659 9.726 9.787 10.017
## beta_height[1] 0.009 0.009 -0.008 0.003 0.009 0.015 0.025
## beta_height[2] 0.012 0.010 -0.008 0.006 0.013 0.019 0.031
## beta_height[3] 0.025 0.003 0.019 0.023 0.025 0.027 0.031
## beta_height[4] 0.008 0.016 -0.030 -0.001 0.010 0.019 0.034
## mu_beta_height 0.014 0.018 -0.024 0.008 0.015 0.021 0.047
## mu_eth 9.705 0.121 9.450 9.658 9.712 9.758 9.941
## sigma 0.905 0.019 0.870 0.891 0.905 0.918 0.944
## sigma_height 0.024 0.027 0.002 0.009 0.015 0.027 0.110
## deviance 2793.247 3.721 2787.598 2790.481 2792.813 2795.410 2801.979
## Rhat n.eff
## alpha_eth[1] 1.008 270
## alpha_eth[2] 1.016 130
## alpha_eth[3] 1.005 460
## alpha_eth[4] 1.006 730
## beta_height[1] 1.012 180
## beta_height[2] 1.007 300
## beta_height[3] 1.001 2800
## beta_height[4] 1.019 120
## mu_beta_height 1.041 230
## mu_eth 1.008 790
## sigma 1.002 3000
## sigma_height 1.030 74
## deviance 1.001 3000
##
## For each parameter, n.eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor (at convergence, Rhat=1).
##
## DIC info (using the rule, pD = var(deviance)/2)
## pD = 6.9 and DIC = 2800.2
## DIC is an estimate of expected predictive error (lower deviance is better).
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Interpreting the output

I The model has improved a bit, DIC now 2800.17 with 6.92 effective parameters
I The confidence intervals for the different slopes are highly different, with the whites

group (ethnicity = 3) having a much clearer relationship with height, possibly due
to the large sample size

I Go back to the previous classes to see plots of these effects
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Checking the model - posterior predictive fit
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Introducing age

I Let’s fit an even more complicated model with intercepts and slopes varying by
ethnicity and age group

I Age is divided up into three groups 1: 18-34, 2: 35-49, and 3: 50-64

I We want to know whether the degree to which height affects earnings for different
ethnic/age group combinations
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JAGS model

jags_code = '
model{

# Likelihood
for(i in 1:N) {

log_earn[i] ~ dnorm(alpha[eth[i],age_grp[i]] +
beta[eth[i],age_grp[i]]*(height[i] - mean(height)),

sigma^-2)
}
# Priors
for(j in 1:N_eth) {

for(k in 1:N_age_grp) {
alpha[j,k] ~ dnorm(mu_alpha, sigma_alpha^-2)
beta[j,k] ~ dnorm(mu_beta, sigma_beta^-2)

}
}
mu_alpha ~ dnorm(11, 2^-2)
mu_beta ~ dnorm(0, 0.1^-2)
sigma_alpha ~ dt(0,5^-2,1)T(0,)
sigma_beta ~ dt(0,1,1)T(0,)
sigma ~ dt(0,5^-2,1)T(0,)

}
'
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Model output
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More about this model

I So we now have varying effects - we should also plot the uncertainties in these lines
(see practical)

I The DIC here is now DIC now 2738.44 with 20.54 effective parameters - a big drop!
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Missing and unbalanced data

I There are many definitions of what ‘unbalanced’ data means in statistics. Usually
we mean that there are different numbers of observations in each group. Our
format of writing e.g. yi ∼ N(αethi

+ βethi
xi , σ

2) allows us to deal with
unbalanced data naturally

I Usually the smaller the sample size of the group the more uncertain the posterior
distribution will be

I But what if we have some missing data? There are different types, and some need
to be more carefully treated than others
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Different types of missing data

I There are many different types of missing data:
I Missing response variables
I Missing covariates
I Missingness that occurs completely at random
I Missingness that occurs as a consequence of the experiment or the data

I The first three are all very easy to deal with in JAGS (less so in Stan). The last one
is much harder, and not something we will go into in any detail. It requires building
a separate model for the missingness process
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The simple way of dealing with missing data in JAGS

I In JAGS it is absolutely trivial to to deal with missingness in the response variable.
You simply fill in the missing values with NA

I JAGS then treats them as parameters to be estimated. You can ‘watch’ them in
the normal way or just ignore them. You thus have the option of getting a posterior
distribution of the missing data points

I Suppose we shoved in some NA values into our data
dat2 = dat
dat2$earn[c(177, 763, 771)] = NA
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Running the model with missingness

print(jags_run)

## Inference for Bugs model at "5", fit using jags,
## 3 chains, each with 2000 iterations (first 1000 discarded)
## n.sims = 3000 iterations saved
## mu.vect sd.vect 2.5% 25% 50% 75% 97.5%
## log_earn[177] 10.330 0.872 8.628 9.741 10.337 10.897 12.052
## log_earn[763] 9.487 0.881 7.754 8.879 9.480 10.100 11.180
## log_earn[771] 9.439 0.891 7.669 8.851 9.447 10.018 11.179
## deviance 2704.327 6.482 2693.373 2699.753 2703.778 2708.325 2719.159
## Rhat n.eff
## log_earn[177] 1.001 3000
## log_earn[763] 1.003 820
## log_earn[771] 1.001 3000
## deviance 1.005 480
##
## For each parameter, n.eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor (at convergence, Rhat=1).
##
## DIC info (using the rule, pD = var(deviance)/2)
## pD = 20.9 and DIC = 2725.3
## DIC is an estimate of expected predictive error (lower deviance is better).
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More complex varieties of missing data

I If you have missing covariates or joint missing covariates/response variables, you
can include these too

I The only extra issue is that you need to give JAGS a prior distribution for the
missing covariate values which can make the code a bit fiddlier

I If the response variable (e.g. log earnings) exists but the covariate value is missing,
then you are asking JAGS to perform an inverse regression

I In Stan missing data is fiddlier to incorporate as you have to separate out the
parameters (i.e. missing data) from the observed data
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Summary

I We have seen how to create some rich multi-layer models
I We have gone through quite a detailed example
I We have discovered how to deal with missing and unbalanced data sets
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