
Class 8: Partial pooling and zero-inflation

Andrew Parnell
andrew.parnell@mu.ie

1 / 33

Learning outcomes:

I Be able to fit some basic zero inflation and hurdle models
I Be able to understand and fit some multinomial modelling examples

2 / 33

Zero-inflation and hurdle models

I Let’s introduce some new data. This is data from an experiment on whiteflies:
wf = read.csv('../data/whitefly.csv')
head(wf)

imm week block trt n live plantid
1 15 1 3 5 12 11 1
2 16 2 3 5 8 6 1
3 28 3 3 5 10 10 1
4 17 4 3 5 10 8 1
5 9 5 3 5 10 10 1
6 28 6 3 5 10 10 1

The response variable here is the count imm of immature whiteflies, and the explanatory
variables are block (plant number), week, and treatment treat.

3 / 33

Look at those zeros!
barplot(table(wf$imm),

main = 'Number of immature whiteflies')

0 2 4 6 8 10 12 14 16 18 20 22 25 27 29 31 33 35 37 41 43 51 53 55 75

Number of immature whiteflies

0
50

10
0

15
0

20
0

25
0

30
0

4 / 33

A first model

I These are count data so a Poisson distribution is a good start
I Let’s consider a basic Poisson distribution model for Yi , i = 1, . . . ,N observations:

Yi ∼ Po(λi)

log(λi) = βtrti

I We’ll only consider the treatment effect but we could run much more complicated
models with e.g. other covariates and interactions

5 / 33

Fitting the model in JAGS
model_code = '
model
{

Likelihood
for (i in 1:N) {

y[i] ~ dpois(lambda[i])
y_pp[i] ~ dpois(lambda[i])
log(lambda[i]) <- beta_trt[trt[i]]

}
Priors
for (j in 1:N_trt) {

beta_trt[j] ~ dnorm(beta_mean, beta_sd^-2)
}
beta_mean ~ dnorm(0, 10^-2)
beta_sd ~ dt(0, 5^-2, 1)T(0,)

}
'

6 / 33

Running the model

jags_run =
jags(data = list(N = nrow(wf),

N_trt = length(unique(wf$trt)),
y = wf$imm,
trt = wf$trt),

parameters.to.save = c('beta_trt', 'y_pp',
'beta_mean', 'beta_sd'),

model.file = textConnection(model_code))

7 / 33

Results
plot(jags_run)

80% interval for each chain R−hat
−2000

−2000

0

0

2000

2000

4000

4000

6000

6000

1 1.5 2+

1 1.5 2+

1 1.5 2+

1 1.5 2+

1 1.5 2+

1 1.5 2+

beta_meanbeta_sdbeta_trt[1][2][3][4][5][6]
deviance

medians and 80% intervals

beta_mean

0

1

2

beta_sd

1

2

3

beta_trt

−2
0
2
4

111111111 222222222 333333333 444444444 555555555 666666666

deviance

4560
4565
4570
4575

y_pp

0

20

40

111111111 222222222 333333333 444444444 555555555 666666666 777777777 888888888 999999999 101010101010101010 121212121212121212 141414141414141414 161616161616161616 181818181818181818 202020202020202020 222222222222222222 242424242424242424 262626262626262626 282828282828282828 303030303030303030 323232323232323232 343434343434343434 363636363636363636 383838383838383838 404040404040404040

*

Bugs model at "4", fit using jags, 3 chains, each with 2000 iterations (first 1000 discarded)

Some clear treatment effects - treatment 5 in particular

8 / 33

Did the model actually fit well?
y_pp = jags_run$BUGSoutput$mean$y_pp
par(mfrow=c(1,2))
hist(wf$imm, breaks = seq(0, max(wf$imm)),

main = 'Data vs posterior predictive fit')
hist(y_pp, breaks = seq(0, max(wf$imm)), add = TRUE, col = 'gray')
plot(wf$imm, y_pp); abline(a = 0, b = 1)

Data vs posterior predictive fit

wf$imm

F
re

qu
en

cy

0 20 40 60

0
15

0
30

0

0 20 40 60

0
10

20

wf$imm

y_
pp

9 / 33

What about the zeros?

I One way of broadening the distribution is through over-dispersion which we have
already met:

log(λi) ∼ N(βtrti , σ
2)

I However this doesn’t really solve the problem of excess zeros

I Instead there are a specific class of models called zero-inflation models which use a
specific probability distribution. The zero-inflated Poisson (ZIP) with ZI parameter
q0 is written as:

p(y |λ) =
{

q0 + (1− q0)× Poisson(0, λ) if y = 0
(1− q0)× Poisson(y , λ) if y 6= 0

10 / 33

Fitting models with custom probability distributions

I The Zero-inflated Poisson distribution is not included in Stan or JAGS by default.
We have to create it

I It’s possible to create new probability distributions in Stan
I It’s a little bit fiddly to do so in JAGS, we have to use some tricks
I We will use JAGS to create a mixture of Poisson distributions; A Poisson(0)

distribution for the zeros, and a Poisson(λ) distribution for the rest

11 / 33

Fitting the ZIP in JAGS
model_code = '
model
{

Likelihood
for (i in 1:N) {

y[i] ~ dpois(lambda[i] * z[i] + 0.0001)
y_pp[i] ~ dpois(lambda[i] * z[i] + 0.0001)
log(lambda[i]) <- beta_trt[trt[i]]
z[i] ~ dbinom(q_0, 1)

}
Priors
for (j in 1:N_trt) {

beta_trt[j] ~ dnorm(beta_mean, beta_sd^-2)
}
beta_mean ~ dnorm(0, 10^-2)
beta_sd ~ dt(0, 5^-2, 1)T(0,)
q_0 ~ dunif(0, 1)

}
'

12 / 33

Running the model

jags_run =
jags(data = list(N = nrow(wf),

N_trt = length(unique(wf$trt)),
y = wf$imm,
trt = wf$trt),

parameters.to.save = c('beta_trt','q_0', 'y_pp',
'beta_mean', 'beta_sd'),

model.file = textConnection(model_code))

13 / 33

Results

plot(jags_run)

80% interval for each chain R−hat
0

0

1000

1000

2000

2000

3000

3000

1 1.5 2+

1 1.5 2+

1 1.5 2+

1 1.5 2+

1 1.5 2+

1 1.5 2+

beta_meanbeta_sdbeta_trt[1][2][3][4][5][6]
devianceq_0

medians and 80% intervals

beta_mean

1
1.5
2

2.5

beta_sd

0.5
1

1.5
2

beta_trt

0
1
2
3
4

111111111 222222222 333333333 444444444 555555555 666666666

deviance

2600

2650

2700

q_0

0.48
0.5

0.52
0.54
0.56

y_pp

0

20

40

111111111 222222222 333333333 444444444 555555555 666666666 777777777 888888888 999999999 101010101010101010 121212121212121212 141414141414141414 161616161616161616 181818181818181818 202020202020202020 222222222222222222 242424242424242424 262626262626262626 282828282828282828 303030303030303030 323232323232323232 343434343434343434 363636363636363636 383838383838383838 404040404040404040

*

Bugs model at "5", fit using jags, 3 chains, each with 2000 iterations (first 1000 discarded)

14 / 33

Did it work any better? - code

y_pp = jags_run$BUGSoutput$mean$y_pp
par(mfrow=c(1,2))
hist(wf$imm, breaks = seq(0, max(wf$imm)),

main = 'Data vs posterior predictive fit')
hist(y_pp, breaks = seq(0, max(wf$imm)), add = TRUE, col = 'gray')
plot(wf$imm, y_pp); abline(a = 0, b = 1)

Data vs posterior predictive fit

wf$imm

F
re

qu
en

cy

0 20 40 60

0
15

0
30

0

0 20 40 60

0
10

20

wf$imm

y_
pp

15 / 33

Some more notes on Zero-inflated Poisson

I This model seems to predict the number of zeros pretty well. It would also be
interesting to perhaps try having a different probability of zeros (q0) for different
treatments

I It might be that the other covariates explain some of the zero behaviour
I We could further add in both zero-inflation and over-dispersion

16 / 33

An alternative: hurdle models

I ZI models work by having a parameter (here q0) which is the probability of getting
a zero, and so the probability of getting a Poisson value (which could also be a
zero) is 1 minus this value

I An alternative (which is slightly more complicated) is a hurdle model where q0
represents the probability of the only way of getting a zero. With probability (1-q0)
we end up with a special Poisson random variable which has to take values 1 or
more

I In some ways this is richer than a ZI model since zeros can be deflated or inflated
I This is a bit fiddlier to fit in JAGS

17 / 33

A hurdle-Poisson model in JAGS
model_code = '
model
{

Likelihood
for (i in 1:N) {

y[i] ~ dpois(lambda[i])T(1,)
log(lambda[i]) <- beta_trt[trt[i]]

}
for(i in 1:N_0) {

y_0[i] ~ dbin(q_0, 1)
}
Priors
for (j in 1:N_trt) {

beta_trt[j] ~ dnorm(beta_mean, beta_sd^-2)
}
beta_mean ~ dnorm(0, 10^-2)
beta_sd ~ dt(0, 5^-2, 1)T(0,)
q_0 ~ dunif(0, 1)

}
'

18 / 33

Running the model

jags_run =
jags(data = list(N = nrow(wf[wf$imm > 0,]),

N_trt = length(unique(wf$trt)),
y = wf$imm[wf$imm > 0],
y_0 = as.integer(wf$imm == 0),
N_0 = nrow(wf),
trt = wf$trt[wf$imm > 0]),

parameters.to.save = c('beta_trt', 'q_0',
'beta_mean', 'beta_sd'),

model.file = textConnection(model_code))

19 / 33

Results
plot(jags_run)

80% interval for each chain R−hat
0

0

2000

2000

4000

4000

1 1.5 2+

1 1.5 2+

1 1.5 2+

1 1.5 2+

1 1.5 2+

1 1.5 2+

beta_meanbeta_sdbeta_trt[1][2][3][4][5][6]
deviance

medians and 80% intervals

beta_mean

1
1.5
2

2.5

beta_sd

0.5
1

1.5
2

beta_trt

0
1
2
3
4

111111111 222222222 333333333 444444444 555555555 666666666

deviance

3465
3470
3475
3480

q_0

0.46
0.48
0.5

0.52
0.54

Bugs model at "4", fit using jags, 3 chains, each with 2000 iterations (first 1000 discarded)

20 / 33

Some final notes on ZI models

I To complete the Poisson-Hurdle fit we would need to simulate from a truncated
Poisson model. This starts to get very fiddly though - see the jags_examples
repository for worked examples

I We can extend these models further by using a better count distribution such as
the negative binomial which has an extra over-dispersion parameter

I We can also add covariates into the zero-inflation component, though it is not
always clear whether this is desirable

21 / 33

The multinomial distribution

I Multinomial data can be thought of as multivariate discrete data

I It’s usually used in two different scenarios:
1. For classification, when you have an observation falling into a single one of K possible

categories
2. For multinomial regression, where you have a set of counts which sum to a known

value N

I We will just consider the multinomial regression case, whereby we have
observations yi = [yi1, . . . , yiK] where the sum

∑K
k=1 yik = Ni is fixed

I The classification version is a simplification of the regression version

22 / 33

Some new data! - pollen

pollen = read.csv('../data/pollen.csv')
head(pollen)

GDD5 MTCO Abies Alnus Betula Picea Pinus.D Quercus.D Gramineae
1 1874 -7.9 0 50 158 7 721 22 0
2 1623 -5.5 0 38 28 302 537 19 0
3 1475 -4.7 0 276 183 110 136 0 0
4 1360 -8.8 0 111 354 141 364 0 0
5 1295 -6.9 0 91 50 151 708 0 0
6 1539 -7.8 0 51 194 82 673 0 0

These data are pollen counts of 7 varieties of pollen from modern samples with two
covariates

23 / 33

Some plots

I The two covariates represent the length of the growing season (GDD5) and
harshness of the winter (MTCO)

I The task is to find which climate regimes each pollen variety favours

0 1000 2000 3000 4000 5000 6000 7000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Length of growing season

E
st

im
at

ed
 p

ro
po

rt
io

n

24 / 33

A multinomial model

I The multinomial distribution is often written as:

[yi1, . . . , yiK] ∼ Mult(Si , {pi1, . . . , piK})

or, for short:
yi ∼ Mult(Si , pi)

I The key parameters here are the probability vectors pi . It’s these we want to use a
link function on to include the covariates

I We need to be careful as each must sum to one:
∑K

k=1 pik = 1. Any link function
must satisfy this constraint

25 / 33

Prior distributions on probability vectors

I When K = 2 we’re back the binomial-logit we met in the first day, and we can use
the logit link function

I When K > 2 a common function to use is the soft-max function:

pik = exp(zik)∑K
j=1 exp(zij)

I This is a generalisation of the logit function
I The next layer of our model sets, e.g.:

zik = β0 + β1GDD5i + γ2MTCOi + . . .

26 / 33

JAGS code
model_code = '
model
{

Likelihood
for (i in 1:N) { # Observaton loops

y[i,] ~ dmulti(p[i,], S[i])
for(j in 1:M) { # Category loop

exp_z[i,j] <- exp(z[i,j])
p[i,j] <- exp_z[i,j]/sum(exp_z[i,])
z[i,j] <- beta[j,]%*%x[i,]

}
}
Prior
for(j in 1:M) {

for(k in 1:K) {
beta[j,k] ~ dnorm(0, 0.1^-2)

}
}

}
'

27 / 33

Let’s fit it (first 500 obs only)

model_data = list(N = nrow(pollen[1:500,]),
y = pollen[1:500,3:9],
x = cbind(1, scale(cbind(pollen[1:500,1:2],

pollen[1:500,1:2]^2))),
S = pollen[1:500,10],
K = 5, # Number of covars
M = 7) # Number of categories

Run the model
model_run = jags(data = model_data,

parameters.to.save = c("p"),
model.file = textConnection(model_code))

28 / 33

Results 1
plot(model_run)

80% interval for each chain R−hat
242100

242100

242200

242200

242300

242300

242400

242400

1 1.5 2+

1 1.5 2+

1 1.5 2+

1 1.5 2+

1 1.5 2+

1 1.5 2+
deviance

medians and 80% intervals

deviance

242100

242200

242300

242400

p

0.012

0.014

0.016

0.018

111111111
111111111

222222222 333333333 444444444 555555555 666666666 777777777 888888888 999999999 101010101010101010 121212121212121212 141414141414141414 161616161616161616 181818181818181818 202020202020202020 222222222222222222 242424242424242424 262626262626262626 282828282828282828 303030303030303030 323232323232323232 343434343434343434 363636363636363636 383838383838383838 404040404040404040

*

Bugs model at "6", fit using jags, 3 chains, each with 2000 iterations (first 1000 discarded)

29 / 33

Results 2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

True proportion of Betula

E
st

im
at

ed
 p

ro
po

rt
io

n
of

 B
et

ul
a

30 / 33

Notes about this model

I This model is not going to fit very well, since it is unlikely that a linear relationship
between the covariates and the pollen counts will match the data

I It might be better to use e.g. a spline model (covered in the next class)
I Similarly we might need some complex interactions between the covariates as they

are strongly linked
I We have constrained the parameters here so that the slopes and intercepts borrow

strength across species. Does this make sense? What else could we do?

31 / 33

Some final notes about multinomial models

I These models can be a pain to deal with as there are tricky constraints on the β
parameters to make them all sum to 1. Instead it’s often easier to just put a tight
prior distribution on them, e.g. β ∼ N(0, 0.1)

I The softmax function is one choice but there are lots of others (logistic ratios, the
Dirichlet distribution, . . .)

I Whilst the classification version of this model just has binary yi (with just a single 1
in it, i.e. Si = 1) most packages (including JAGS and Stan) have a special
distribution (e.g. dcat in JAGS) for this situation

32 / 33

Summary

I We have fitted some zero inflated and hurdle Poisson models in JAGS
I We have seen a simple multinomial logistic regression

33 / 33

