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Learning outcomes:

I Be able to fit some basic zero inflation and hurdle models
I Be able to understand and fit some multinomial modelling examples
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Zero-inflation and hurdle models

I Let’s introduce some new data. This is data from an experiment on whiteflies:
wf = read.csv('../data/whitefly.csv')
head(wf)

## imm week block trt n live plantid
## 1 15 1 3 5 12 11 1
## 2 16 2 3 5 8 6 1
## 3 28 3 3 5 10 10 1
## 4 17 4 3 5 10 8 1
## 5 9 5 3 5 10 10 1
## 6 28 6 3 5 10 10 1

The response variable here is the count imm of immature whiteflies, and the explanatory
variables are block (plant number), week, and treatment treat.
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Look at those zeros!
barplot(table(wf$imm),

main = 'Number of immature whiteflies')
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A first model

I These are count data so a Poisson distribution is a good start
I Let’s consider a basic Poisson distribution model for Yi , i = 1, . . . ,N observations:

Yi ∼ Po(λi)

log(λi) = βtrti

I We’ll only consider the treatment effect but we could run much more complicated
models with e.g. other covariates and interactions
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Fitting the model in JAGS
model_code = '
model
{

# Likelihood
for (i in 1:N) {

y[i] ~ dpois(lambda[i])
y_pp[i] ~ dpois(lambda[i])
log(lambda[i]) <- beta_trt[trt[i]]

}
# Priors
for (j in 1:N_trt) {

beta_trt[j] ~ dnorm(beta_mean, beta_sd^-2)
}
beta_mean ~ dnorm(0, 10^-2)
beta_sd ~ dt(0, 5^-2, 1)T(0,)

}
'
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Running the model

jags_run =
jags(data = list(N = nrow(wf),

N_trt = length(unique(wf$trt)),
y = wf$imm,
trt = wf$trt),

parameters.to.save = c('beta_trt', 'y_pp',
'beta_mean', 'beta_sd'),

model.file = textConnection(model_code))
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Results
plot(jags_run)
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*

Bugs model at "4", fit using jags, 3 chains, each with 2000 iterations (first 1000 discarded)

Some clear treatment effects - treatment 5 in particular
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Did the model actually fit well?
y_pp = jags_run$BUGSoutput$mean$y_pp
par(mfrow=c(1,2))
hist(wf$imm, breaks = seq(0, max(wf$imm)),

main = 'Data vs posterior predictive fit')
hist(y_pp, breaks = seq(0, max(wf$imm)), add = TRUE, col = 'gray')
plot(wf$imm, y_pp); abline(a = 0, b = 1)
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What about the zeros?

I One way of broadening the distribution is through over-dispersion which we have
already met:

log(λi) ∼ N(βtrti , σ
2)

I However this doesn’t really solve the problem of excess zeros

I Instead there are a specific class of models called zero-inflation models which use a
specific probability distribution. The zero-inflated Poisson (ZIP) with ZI parameter
q0 is written as:

p(y |λ) =
{

q0 + (1− q0)× Poisson(0, λ) if y = 0
(1− q0)× Poisson(y , λ) if y 6= 0
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Fitting models with custom probability distributions

I The Zero-inflated Poisson distribution is not included in Stan or JAGS by default.
We have to create it

I It’s possible to create new probability distributions in Stan
I It’s a little bit fiddly to do so in JAGS, we have to use some tricks
I We will use JAGS to create a mixture of Poisson distributions; A Poisson(0)

distribution for the zeros, and a Poisson(λ) distribution for the rest

11 / 33



Fitting the ZIP in JAGS
model_code = '
model
{

# Likelihood
for (i in 1:N) {

y[i] ~ dpois(lambda[i] * z[i] + 0.0001)
y_pp[i] ~ dpois(lambda[i] * z[i] + 0.0001)
log(lambda[i]) <- beta_trt[trt[i]]
z[i] ~ dbinom(q_0, 1)

}
# Priors
for (j in 1:N_trt) {

beta_trt[j] ~ dnorm(beta_mean, beta_sd^-2)
}
beta_mean ~ dnorm(0, 10^-2)
beta_sd ~ dt(0, 5^-2, 1)T(0,)
q_0 ~ dunif(0, 1)

}
'
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Running the model

jags_run =
jags(data = list(N = nrow(wf),

N_trt = length(unique(wf$trt)),
y = wf$imm,
trt = wf$trt),

parameters.to.save = c('beta_trt','q_0', 'y_pp',
'beta_mean', 'beta_sd'),

model.file = textConnection(model_code))
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Results

plot(jags_run)

80% interval for each chain R−hat
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*

Bugs model at "5", fit using jags, 3 chains, each with 2000 iterations (first 1000 discarded)
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Did it work any better? - code

y_pp = jags_run$BUGSoutput$mean$y_pp
par(mfrow=c(1,2))
hist(wf$imm, breaks = seq(0, max(wf$imm)),

main = 'Data vs posterior predictive fit')
hist(y_pp, breaks = seq(0, max(wf$imm)), add = TRUE, col = 'gray')
plot(wf$imm, y_pp); abline(a = 0, b = 1)
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Some more notes on Zero-inflated Poisson

I This model seems to predict the number of zeros pretty well. It would also be
interesting to perhaps try having a different probability of zeros (q0) for different
treatments

I It might be that the other covariates explain some of the zero behaviour
I We could further add in both zero-inflation and over-dispersion
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An alternative: hurdle models

I ZI models work by having a parameter (here q0) which is the probability of getting
a zero, and so the probability of getting a Poisson value (which could also be a
zero) is 1 minus this value

I An alternative (which is slightly more complicated) is a hurdle model where q0
represents the probability of the only way of getting a zero. With probability (1-q0)
we end up with a special Poisson random variable which has to take values 1 or
more

I In some ways this is richer than a ZI model since zeros can be deflated or inflated
I This is a bit fiddlier to fit in JAGS
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A hurdle-Poisson model in JAGS
model_code = '
model
{

# Likelihood
for (i in 1:N) {

y[i] ~ dpois(lambda[i])T(1,)
log(lambda[i]) <- beta_trt[trt[i]]

}
for(i in 1:N_0) {

y_0[i] ~ dbin(q_0, 1)
}
# Priors
for (j in 1:N_trt) {

beta_trt[j] ~ dnorm(beta_mean, beta_sd^-2)
}
beta_mean ~ dnorm(0, 10^-2)
beta_sd ~ dt(0, 5^-2, 1)T(0,)
q_0 ~ dunif(0, 1)

}
'
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Running the model

jags_run =
jags(data = list(N = nrow(wf[wf$imm > 0,]),

N_trt = length(unique(wf$trt)),
y = wf$imm[wf$imm > 0],
y_0 = as.integer(wf$imm == 0),
N_0 = nrow(wf),
trt = wf$trt[wf$imm > 0]),

parameters.to.save = c('beta_trt', 'q_0',
'beta_mean', 'beta_sd'),

model.file = textConnection(model_code))
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Results
plot(jags_run)

80% interval for each chain R−hat
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Some final notes on ZI models

I To complete the Poisson-Hurdle fit we would need to simulate from a truncated
Poisson model. This starts to get very fiddly though - see the jags_examples
repository for worked examples

I We can extend these models further by using a better count distribution such as
the negative binomial which has an extra over-dispersion parameter

I We can also add covariates into the zero-inflation component, though it is not
always clear whether this is desirable
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The multinomial distribution

I Multinomial data can be thought of as multivariate discrete data

I It’s usually used in two different scenarios:
1. For classification, when you have an observation falling into a single one of K possible

categories
2. For multinomial regression, where you have a set of counts which sum to a known

value N

I We will just consider the multinomial regression case, whereby we have
observations yi = [yi1, . . . , yiK ] where the sum

∑K
k=1 yik = Ni is fixed

I The classification version is a simplification of the regression version
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Some new data! - pollen

pollen = read.csv('../data/pollen.csv')
head(pollen)

## GDD5 MTCO Abies Alnus Betula Picea Pinus.D Quercus.D Gramineae
## 1 1874 -7.9 0 50 158 7 721 22 0
## 2 1623 -5.5 0 38 28 302 537 19 0
## 3 1475 -4.7 0 276 183 110 136 0 0
## 4 1360 -8.8 0 111 354 141 364 0 0
## 5 1295 -6.9 0 91 50 151 708 0 0
## 6 1539 -7.8 0 51 194 82 673 0 0

These data are pollen counts of 7 varieties of pollen from modern samples with two
covariates
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Some plots

I The two covariates represent the length of the growing season (GDD5) and
harshness of the winter (MTCO)

I The task is to find which climate regimes each pollen variety favours
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A multinomial model

I The multinomial distribution is often written as:

[yi1, . . . , yiK ] ∼ Mult(Si , {pi1, . . . , piK})

or, for short:
yi ∼ Mult(Si , pi)

I The key parameters here are the probability vectors pi . It’s these we want to use a
link function on to include the covariates

I We need to be careful as each must sum to one:
∑K

k=1 pik = 1. Any link function
must satisfy this constraint
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Prior distributions on probability vectors

I When K = 2 we’re back the binomial-logit we met in the first day, and we can use
the logit link function

I When K > 2 a common function to use is the soft-max function:

pik = exp(zik)∑K
j=1 exp(zij)

I This is a generalisation of the logit function
I The next layer of our model sets, e.g.:

zik = β0 + β1GDD5i + γ2MTCOi + . . .
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JAGS code
model_code = '
model
{

# Likelihood
for (i in 1:N) { # Observaton loops

y[i,] ~ dmulti(p[i,], S[i])
for(j in 1:M) { # Category loop

exp_z[i,j] <- exp(z[i,j])
p[i,j] <- exp_z[i,j]/sum(exp_z[i,])
z[i,j] <- beta[j,]%*%x[i,]

}
}
# Prior
for(j in 1:M) {

for(k in 1:K) {
beta[j,k] ~ dnorm(0, 0.1^-2)

}
}

}
'
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Let’s fit it (first 500 obs only)

model_data = list(N = nrow(pollen[1:500,]),
y = pollen[1:500,3:9],
x = cbind(1, scale(cbind(pollen[1:500,1:2],

pollen[1:500,1:2]^2))),
S = pollen[1:500,10],
K = 5, # Number of covars
M = 7) # Number of categories

# Run the model
model_run = jags(data = model_data,

parameters.to.save = c("p"),
model.file = textConnection(model_code))
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Results 1
plot(model_run)
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Bugs model at "6", fit using jags, 3 chains, each with 2000 iterations (first 1000 discarded)
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Results 2
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Notes about this model

I This model is not going to fit very well, since it is unlikely that a linear relationship
between the covariates and the pollen counts will match the data

I It might be better to use e.g. a spline model (covered in the next class)
I Similarly we might need some complex interactions between the covariates as they

are strongly linked
I We have constrained the parameters here so that the slopes and intercepts borrow

strength across species. Does this make sense? What else could we do?
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Some final notes about multinomial models

I These models can be a pain to deal with as there are tricky constraints on the β
parameters to make them all sum to 1. Instead it’s often easier to just put a tight
prior distribution on them, e.g. β ∼ N(0, 0.1)

I The softmax function is one choice but there are lots of others (logistic ratios, the
Dirichlet distribution, . . . )

I Whilst the classification version of this model just has binary yi (with just a single 1
in it, i.e. Si = 1) most packages (including JAGS and Stan) have a special
distribution (e.g. dcat in JAGS) for this situation
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Summary

I We have fitted some zero inflated and hurdle Poisson models in JAGS
I We have seen a simple multinomial logistic regression
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