Class 8: Partial pooling and zero-inflation

Andrew Parnell
andrew.parnell@mu.ie

Maynooth
University

National University
of Ireland Maynooth

1/33

Learning outcomes:

» Be able to fit some basic zero inflation and hurdle models
» Be able to understand and fit some multinomial modelling examples

2/33

Zero-inflation and hurdle models

» Let's introduce some new data. This is data from an experiment on whiteflies:

wf = read.csv('../data/whitefly.csv')
head (wf)

#Hit imm week block trt =n live plantid

1 15 1 3 5 12 11 1
2 16 2 3 5 8 6 1
3 28 3 3 510 10 1
4 17 4 3 510 8 1
5 9 5 3 510 10 1
6 28 6 3 510 10 1

The response variable here is the count imm of immature whiteflies, and the explanatory
variables are block (plant number), week, and treatment treat.

3/33

Look at those zeros!
barplot (table (wf$imm),
main = 'Number of immature whiteflies')

Number of immature whiteflies

100 150 200 250 300
1

o - |_||_||_||_|.—||_|l_|l—|l_h—u—|l_"_|l_|.—..—|l_| = ()

0 2 4 6 8 10 12 14 16 18 20 22 25 27 29 31 33 35 37 41 43 51 53 55 75
4/33

A first model

P> These are count data so a Poisson distribution is a good start

» Let's consider a basic Poisson distribution model for Y;, i =1,..., N observations:

Y,' ~ PO()\,')

log(\i) = Birt,

» We'll only consider the treatment effect but we could run much more complicated
models with e.g. other covariates and interactions

5/33

Fitting the model in JAGS

model_code = '
model
{
Likelihood
for (i in 1:N) {
y[i]l ~ dpois(lambdali])
y_pplil ~ dpois(lambdalil)
log(lambdal[i]) <- beta_trt[trt[i]]
}
Priors
for (j in 1:N_trt) {
beta_trt[j] ~ dnorm(beta_mean, beta_sd™-2)
}
beta_mean ~ dnorm(0, 107-2)
beta_sd ~ dt(0, 5°-2, 1)T(0,)

6/33

Running the model

jags_run =
jags(data = 1list(N = nrow(wf),
N_trt = length(unique(wf$trt)),
y = wf$imm,
trt = wf$trt),
parameters.to.save = c('beta_trt', 'y_pp',
'beta_mean', 'beta_sd'),

model.file = textConnection(model_code))

7/33

Results

plot(jags_run)

Bugs model at "4", fit using jags, 3 chains, each with 2000 iterations (first 1000 discarded)

UQD Boﬁ mlerv?dabeachm 6000 1 R]fbjt 2+ medians and 80% intervals
BetE- : 2
§ § beta_mean 1 } *
deviancs”_go——0——Zo00 AT 000 i TE 2+

beta_sd }
4
beta_trt i
deviance :Z;g i
poc
©y_pp } [EERR R R R RRREERRERRE R

12345678910 12 14 16 18 20 2 24 2 28 P PR 3} % BN

Some clear treatment effects - treatment 5 in particular

8/33

Did the model actually fit well?

y_pp = jags_run$BUGSoutput$mean$y_pp

par (mfrow=c(1,2))

hist(wf$imm, breaks = seq(0, max(wf$imm)),

main = 'Data vs posterior predictive fit')
hist(y_pp, breaks = seq(0, max(wf$imm)), add = TRUE, col = 'gray')
plot(wf$imm, y_pp); abline(a =

Frequency

150 300

0

Data vs posterior predictive fit

9

T T 1
20 40 60

wf$imm

0, b =1)

y_pp

9/33

What about the zeros?

» One way of broadening the distribution is through over-dispersion which we have
already met:

2
log(Ai) ~ N(Btrt;,07)
» However this doesn't really solve the problem of excess zeros

» Instead there are a specific class of models called zero-inflation models which use a
specific probability distribution. The zero-inflated Poisson (ZIP) with ZI parameter
go is written as:

) =< P + (1 — qo) x Poisson(0,\) if y =0
PUIA) = (1 — qo) x Poisson(y, \) if y#0

10/33

Fitting models with custom probability distributions

» The Zero-inflated Poisson distribution is not included in Stan or JAGS by default.
We have to create it

» It's possible to create new probability distributions in Stan

> It's a little bit fiddly to do so in JAGS, we have to use some tricks

» We will use JAGS to create a mixture of Poisson distributions; A Poisson(0)
distribution for the zeros, and a Poisson(\) distribution for the rest

11/33

Fitting the ZIP in JAGS

model_code = '
model

{

Likelihood
for (i in 1:N) {
y[il ~ dpois(lambdal[i] * z[i] + 0.0001)
y_pplil ~ dpois(lambdali] * z[i] + 0.0001)
log(lambda[i]) <- beta_trt[trt[i]]
z[i] ~ dbinom(q_0, 1)
}
Priors
for (j in 1:N_trt) {
beta_trt[j] ~ dnorm(beta_mean, beta_sd”~-2)
+
beta_mean ~ dnorm(0, 107-2)
beta_sd ~ dt(0, 5°-2, 1)T(0,)
q_0 ~ dunif(0, 1)

12/33

Running the model

jags_run =
jags(data = 1list(N = nrow(wf),
N_trt = length(unique(wf$trt)),
y = wf$imm,

trt = wf$trt),
parameters.to.save = c('beta_trt','q 0', 'y_pp',
'beta_mean', 'beta_sd'),
model.file = textConnection(model_code))

13/33

Results

plot(jags_run)

Bugs model at "5", fit using jags, 3 chains, each with 2000 iterations (first 1000 discarded)

80% jpterval for e: hain 00 Rzhat " medians and 80% intervals
| M 25
Bea- : ;S
H H beta_mean 1 5
geganc! R - :
- [y 1000 2000 3000 T 15 2+

beta_sd

)
3
beta_trt 2
1
0

2600

PHEEEEE R bbb bttt a4t fhbbts

12345678910 12 14 16 18 20 22 24 2 28°30 32 34 B "B/ H

*Y_pp

2700
deviance 2650 }

14/33

Did it work any better? - code

y_pp = jags_run$BUGSoutput$mean$y_pp
par (mfrow=c(1,2))
hist(wf$imm, breaks

hist(y_pp, breaks
plot(wf$imm, y_pp); abline(a

Frequency

150 300

0

Data vs posterior predictive fit

Ll

= seq(0, max(wf$imm)),
main = 'Data vs posterior predictive fit')
seq(0, max(wf$imm)), add = TRUE, col

0

T
20

40

wf$imm

60

y_pp

lgrayl)

15/33

Some more notes on Zero-inflated Poisson

» This model seems to predict the number of zeros pretty well. It would also be
interesting to perhaps try having a different probability of zeros (qo) for different
treatments

P It might be that the other covariates explain some of the zero behaviour

» We could further add in both zero-inflation and over-dispersion

16/33

An alternative: hurdle models

» ZI models work by having a parameter (here qo) which is the probability of getting
a zero, and so the probability of getting a Poisson value (which could also be a
zero) is 1 minus this value

» An alternative (which is slightly more complicated) is a hurdle model where qo
represents the probability of the only way of getting a zero. With probability (1-go)
we end up with a special Poisson random variable which has to take values 1 or
more

P In some ways this is richer than a ZI model since zeros can be deflated or inflated

» This is a bit fiddlier to fit in JAGS

17/33

A hurdle-Poisson model in JAGS

model_code = '
model
{
Likelihood
for (i in 1:N) {
y[i] ~ dpois(lambda[i])T(1,)
log(lambda[i]) <- beta_trt[trt[i]]
I
for(i in 1:N_0) {
y_0[i] ~ dbin(q_0, 1)
}
Priors
for (j in 1:N_trt) {
beta_trt[j] ~ dnorm(beta_mean, beta_sd™-2)
+
beta_mean ~ dnorm(0, 107-2)
beta_sd ~ dt(0, 5°-2, 1)T(0,)
q_0 ~ dunif(0, 1)

18/33

Running the model

jags_run =
jags(data = list(N = nrow(wf[wf$imm > 0,]),
N_trt = length(unique(wf$trt)),
y = wif$imm[wf$imm > 0],
y_0 = as.integer(wf$imm == 0),

N_O = nrow(wf),
trt = wf$trt[wi$imm > 0]),
parameters.to.save = c('beta_trt', 'q_0',
'beta_mean', 'beta_sd'),

model.file = textConnection(model_code))

19/33

Resiilte

plot(jags_run)

Beta-

devianc

an

80% intervgdfebeach chain

Bugs model at "4", fit using jags, 3 chains, each with 2000 iterations (first 1000 discarded)

4000

Rigat

2+

O O

2000

4000

e secsas s o

15

2+

2
beta_mean

beta_sd

beta_trt

deviance

25

oRrNWA

3480 —
3475
3470
3465 —

0.54
0.52

0.48
0.46

medians and 80% intervals

20/33

Some final notes on ZI| models

» To complete the Poisson-Hurdle fit we would need to simulate from a truncated
Poisson model. This starts to get very fiddly though - see the jags_examples
repository for worked examples

» We can extend these models further by using a better count distribution such as
the negative binomial which has an extra over-dispersion parameter

» We can also add covariates into the zero-inflation component, though it is not
always clear whether this is desirable

21/33

The multinomial distribution

» Multinomial data can be thought of as multivariate discrete data

» It's usually used in two different scenarios:

1. For classification, when you have an observation falling into a single one of K possible
categories
2. For multinomial regression, where you have a set of counts which sum to a known

value N

> We will just consider the multinomial regression case, whereby we have
i — K _ o
observations y; = [yi1,. .., Yik] where the sum Y) ; yix = N; is fixed

» The classification version is a simplification of the regression version

22/33

Some new data! - pollen

pollen = read.csv('../data/pollen.csv')

head(pollen)
GDD5

1 1874 -7.
2 1623 -5
3 1475 -4
4 1360 -8
5 1295 -6
6 1539 -7

These data are pollen counts of 7 varieties of pollen from modern samples with two
covariates

MTCO Abies Alnus Betula Picea Pinus.D Quercus.D Gramineae

oo~

9

0

0
0
0
0
0

50
38
276
111
91
51

158
28
183
354
50
194

7
302
110
141
151

82

721
537
136
364
708
673

22
19
0

0
0
0

o ocoooo

23/33

Some plots

» The two covariates represent the length of the growing season (GDD5) and
harshness of the winter (MTCO)

» The task is to find which climate regimes each pollen variety favours

0

o

Estimated proportion

00 02 04 06 08 1

0 1000 2000 3000 4000 5000 6000 7000

Length of growing season

24/33

A multinomial model

» The multinomial distribution is often written as:

[_yila cee 7_yiK] ~ MUlt(Sl'u {Pi17 ey PiK})
or, for short:
yi ~ Mult(S;, p;)
P> The key parameters here are the probability vectors p;. It's these we want to use a

link function on to include the covariates

» We need to be careful as each must sum to one: E,’le pik = 1. Any link function
must satisfy this constraint

25/33

Prior distributions on probability vectors

» When K =2 we're back the binomial-logit we met in the first day, and we can use
the logit link function
» When K > 2 a common function to use is the soft-max function:

exp(zik)

Pik = —%—— <
ZJ'K:1 eXP(Zij)

> This is a generalisation of the logit function
» The next layer of our model sets, e.g.:

zi = Po + 1GDD5; +12MTCO; + ...

26 /33

JAGS code

model_code = '
model
{
Likelihood
for (i in 1:N) { # Observaton loops
y[i,] ~ dmulti(p[i,], S[il)
for(j in 1:M) { # Category loop
exp_zl[i,j] <- exp(zl[i,jl)
pli,jl <- exp_z[i,jl/sum(exp_z[i,])
z[i,j] <- betalj,]1%*%x[1i,]
¥
}
Prior
for(j in 1:M) {
for(k in 1:K) {
betal[j,k] ~ dnorm(0, 0.17-2)
}
}
}

k 27/33

Let's fit it (first 500 obs only)

model_data = list(N = nrow(pollen[1:500,]),
y = pollen[1:500,3:9],
x = cbind(1, scale(cbind(pollen[1:500,1:2],
pollen[1:500,1:2]172))),
S = pollen[1:500,10],
K =5, # Number of cowars
M = 7) # Number of categories
Run the model
model_run = jags(data = model_data,
parameters.to.save = c("p"),
model.file = textConnection(model code))

28/33

Results 1
plot(model_run)

Bugs model at "6", fit using jags, 3 chains, each with 2000 iterations (first 1000 discarded)

Y i R-hat I
242100 80 figﬁ%rgal for %%SBaln 242400 1 1 5a 2 medians and 80% intervals
deviance ———— .
242100 242200 242300 242400 T 15 2+
242400
242300
deviance
242200
242100
0.018

0.016 + + + +

0.012
2345678910 12 14 16 18 20 2 24 % 28 N 2 U B B L

29/33

Results 2

Estimated proportion of Betula

01 02 03 04 05 06

0.0

True proportion of Betula

o
o
o
o
o
I I
0.8 1.0

30/33

Notes about this model

» This model is not going to fit very well, since it is unlikely that a linear relationship
between the covariates and the pollen counts will match the data

» It might be better to use e.g. a spline model (covered in the next class)

» Similarly we might need some complex interactions between the covariates as they
are strongly linked

» We have constrained the parameters here so that the slopes and intercepts borrow
strength across species. Does this make sense? What else could we do?

31/33

Some final notes about multinomial models

» These models can be a pain to deal with as there are tricky constraints on the 3
parameters to make them all sum to 1. Instead it's often easier to just put a tight
prior distribution on them, e.g. 5 ~ N(0,0.1)

» The softmax function is one choice but there are lots of others (logistic ratios, the
Dirichlet distribution, ...)

» Whilst the classification version of this model just has binary y; (with just a single 1
in it, i.e. §; = 1) most packages (including JAGS and Stan) have a special
distribution (e.g. dcat in JAGS) for this situation

32/33

Summary

> We have fitted some zero inflated and hurdle Poisson models in JAGS
> We have seen a simple multinomial logistic regression

33/33

