Class 1: An introduction to data visualisation

Andrew Parnell andrew.parnell@mu.ie

PRESS RECORD https://andrewcparnell.github.io/dataviz_course

Let's get started

About me

- ► Tell me (on slack):
 - who you are,
 - > your previous experience in working with R and visualisation,
 - what you are working on,
 - what you want to get out of the course,
- Timetable for the course

Pre-requisites

How this course works

- This course lives on GitHub, which means anyone can see the slides, code, etc, and make comments on it
- The timetable document (index.html) provides links to all the pdf slides and practicals
- The slides and the practicals are all written in Rmarkdown format, which means you can load them up in Rstudio and see how everything was created
- Let me know if you spot mistakes, as these can be easily updated on the GitHub page
- There is a dataviz_course.Rproj R project file from which you should be able to run all the code

Copyright statement

All the non-GitHub materials provided in the Introduction to Data Visualisation are copyright of Andrew Parnell and Catherine Hurley.

This means:

- As a user (the student) you have permission (licence) to access the materials to aid and support your individual studies.
- You are not permitted to copy or distribute any materials without the relevant permission
- As faculty we may reserve the right to remove a user in the event of any possible infringement

Course format and other details

- Lectures will take place in the morning via Zoom, practical classes in the afternoon
- I aim to make the lecture classes last around 45 minutes, leaving 15 minutes for questions (feel free to ask either during the lecture or at the end)
- In the practical classes I will go round the room asking people how they are getting on
- If you want to send me a private message use Slack
- Please ask lots of questions, but MUTE YOUR MICROPHONE when not asking them
- Some good resources:
 - Data Visualisation (chapter) by Hadley Wickham
 - The psychology of data visualisation by Michael Friendly
 - The ggplot2 book
 - Fundamentals of data visualisation by Claus Wilke

Where should we start? Chat GPT!

- The purpose of data visualization is to communicate information clearly and effectively through graphical means.
- 2. Choosing the right type of chart or graph for the data and the message you want to convey is important.
- 3. Keep it simple and avoid clutter.
- Use colors, labels, and annotations to provide context and emphasize important elements.
- 5. Always consider the audience and their level of understanding of the data.
- Data visualization is important in data analysis and can help to identify patterns, trends, and outliers.
- 7. Ensure the data you are using is accurate and reliable.
- Interactive visualization can be more engaging and allows for more exploration of the data.

Why visualise data?

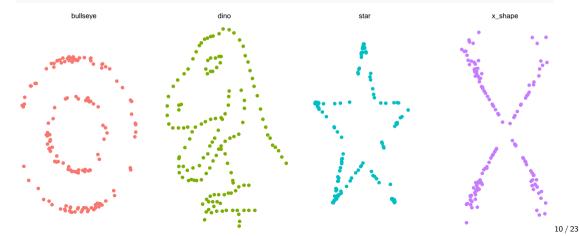
library(datasauRus)

datasaurus_four %>% head

##	#	A tibble	e: 6 x	3
##		dataset	x	У
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>
##	1	dino	55.4	97.2
##	2	dino	51.5	96.0
##	3	dino	46.2	94.5
##	4	dino	42.8	91.4
##	5	dino	40.8	88.3
##	6	dino	38.7	84.9

Create some summary statistics

```
datasaurus_four %>%
group_by(dataset) %>%
summarize(
    mean_x = mean(x),
    mean_y = mean(y),
    std_dev_x = sd(x),
    std_dev_y = sd(y),
    corr_x_y = cor(x, y)
)
```


##	#	A tibble: 4 x 6								
##		dataset	mean_x	mean_y	std_dev_x	std_dev_y	corr_x_y			
##		<chr></chr>	<dbl></dbl>	<db1></db1>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>			
##	1	bullseye	54.3	47.8	16.8	26.9	-0.0686			
##	2	dino	54.3	47.8	16.8	26.9	-0.0645			
##	3	star	54.3	47.8	16.8	26.9	-0.0630			
##	4	x_shape	54.3	47.8	16.8	26.9	-0.0656			

Run some linear regressions?

```
datasaurus_four %>%
  group_by(dataset) %>%
  summarize(
    intercept = lm(y ~ x)$coefficients[1],
    slope = lm(y ~ x)$coefficients[2]
)
```

##	#	A tibble: 4 x 3								
##		dataset intercept slope								
##		<chr></chr>	<chr> <dbl> <dbl></dbl></dbl></chr>							
##	1	bullseye	53.8	-0.110						
##	2	dino	53.5	-0.104						
##	3	star	53.3	-0.101						
##	4	x_shape	53.6	-0.105						

... but what if we plot the data? ggplot(datasaurus_four, aes(x = x, y = y, colour = dataset)) + geom_point() + theme_void() + theme(legend.position = "none") + facet_wrap(~dataset, ncol = 4)

Introduction to example data sets used in the course:

- All data sets used in this course are either in the data directory or come from packages
- The data_desciption.txt file in the data directory contains a list of all the fields and references
- Look at the help file for the data sets that come from the packages to see the full list of fields
- The data sets include...

palmerpenguins

library(palmerpenguins)
penguins %>% glimpse()

- ## Rows: 344
- ## Columns: 8
- ## \$ species <fct> Adelie, Adelie

Swiss Willow Tits

3 replicate measurements on whether Swiss Willow Tits were found with covariates on forest cover and elevation

##		rep.1	rep.2	rep.3	c.2	c.3	elev	forest	dur.1	dur.2	dur.3	length	alt
##	1	0	0	0	0	0	420	3	240	58	73	6.2	Low
##	2	0	0	0	0	0	450	21	160	39	62	5.1	Low
##	3	0	0	0	0	0	1050	32	120	47	74	4.3	Med
##	4	0	0	0	0	0	1110	35	180	44	71	5.4	Med
##	5	0	0	0	0	0	510	2	210	56	73	3.6	Low
##	6	0	0	0	0	0	630	60	150	56	73	6.1	Low

How do the covariates affect the chance of finding the birds?

- Are these effects linear?
- What do we do with the missing data?

Palaeoclimate pollen data

A set of modern pollen counts and their associated climates. The variables are: GDD5 (Growing degree days about 5C), MTCO (Mean temperature of the coldest month), pollen counts of taxa (Abies - Graminaea).

##		GDD5	MTCO	Abies	Alnus	Betula	Picea	Pinus.D	Quercus.D	Gramineae
##	1	1874	-7.9	0	50	158	7	721	22	0
##	2	1623	-5.5	0	38	28	302	537	19	0
##	3	1475	-4.7	0	276	183	110	136	0	0
##	4	1360	-8.8	0	111	354	141	364	0	0
##	5	1295	-6.9	0	91	50	151	708	0	0
##	6	1539	-7.8	0	51	194	82	673	0	0

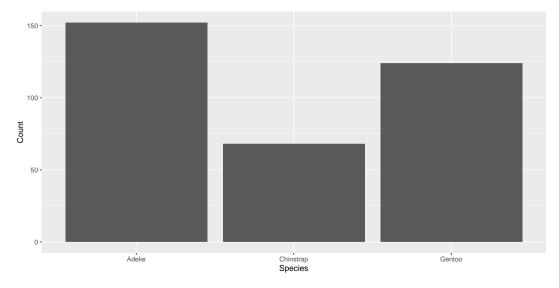
How are pollen species affected by these climate variables?

- Are these effects linear?
- Are their relationships between the pollen taxa?

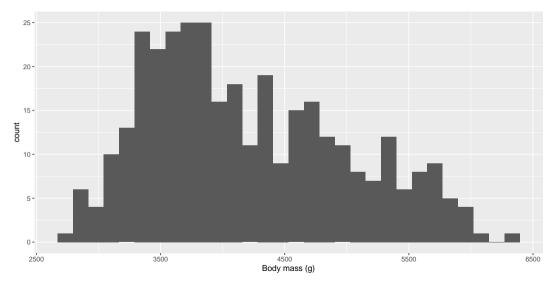
A checklist for data visualisation

- What is the message you are trying to convey?
- What medium will the visualisation be displayed in (paper/poster/screen/interactive/...)?
- How much space do you have?
- ▶ How much explanation can you give to accompany the visualisation?
- What size will the visualisation be?
- ▶ Will colour and transparency be allowed?
- How long will people spend looking at the visualisation?

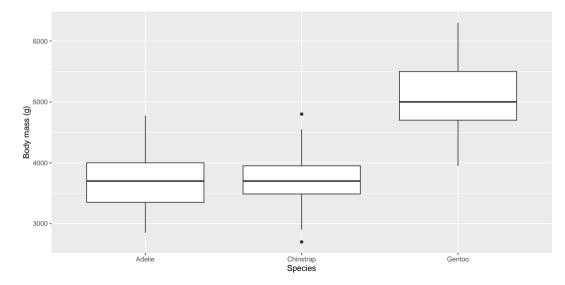
Reminder of basic data types and their influence on visualisation tools

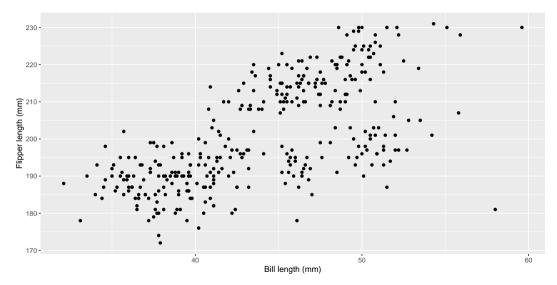

Lots of different categorisations of data but the most important ones are:

- Categorical data (e.g. names)
- Ordinal data (e.g. agreement levels)
- Continuous data (e.g. height in cm)


Visualisations usually involve multiple variables, often of different types

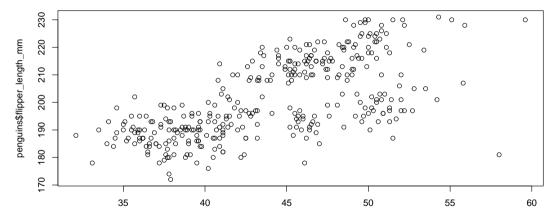
The data type will often strongly guide the choice of visualisation


Some basic plot types: 1 Bar charts


Some basic plot types: 2 Histograms

Some basic plot types: 3 Boxplots

Some basic plot types: 4 Scatter plots



10 basic rules for plotting

- $1. \ \mbox{Avoid ink that isn't representing the data}$
- 2. Avoid outlines; try to fill things in if you can. Use transparency
- 3. Don't use 3D visualisations
- 4. Don't use pie charts. Ever
- 5. Write clear and informative captions/titles appropriate for the medium
- 6. Try to label interesting features of a plot directly
- 7. Use colour carefully; try to avoid too many colours
- 8. If you must have a legend then think carefully about the labelling
- 9. Use a small number of related multiple figures (facets)
- 10. Think about the units of the axes should a plot be square or rectangular?

Exercise: try and list 5 things that are bad about the following plot

plot(penguins\$bill_length_mm, penguins\$flipper_length_mm)

penguins\$bill_length_mm

Summary

► Follow the rules . . .

... use the checklist...

▶ ... and try to make the whole process fun for yourself