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Let’s get started

I Welcome and introduction

I Timetable for the course

I Pre-requisites
I Please install these when you get ten spare minutes
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How this course works

I This course lives on GitHub, which means anyone can see the slides, code, etc, and
make comments on it

I The timetable document (index.html) provides links to all the pdf slides and
practicals

I The slides and the practicals are all written in Rmarkdown format, which means you
can load them up in Rstudio and see how everything was created

I Let me know if you spot mistakes, as these can be easily updated on the GitHub
page

I There is a mda_course.Rproj R project file from which you should be able to run
all the code
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Pre-requisites

These things I’m assuming you already know:

1. Understanding of basic univariate probability distributions such as the normal and
the binomial

2. Understanding of basic probability theory and e.g. Bayes’ theorem

3. Understanding of linear regression, least squares, and interpreting the output of
e.g. lm

4. Knowing how to use R and basic plots

It helps if you know a little bit about multivariate distributions such as the multivariate
normal and multinomial
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Course format and other details

I We will do two lectures (separated by a coffee break) then have a practical class
where we go through some R code and you get a chance to work by yourself

I If you want to send me a private message use the message board and I will try to
answer them as we go

I Please ask lots of questions, but MUTE YOUR MICROPHONE when not
asking them

I Some books:
I Statistical Analysis with Missing Data by Little and Rubin
I Bayesian Data Analysis by Gelman et al (chapter on Missing Data Analysis)
I Flexible Imputation of Missing Data by Stef van Buuren
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Why care about missing data analysis?

Statistics is a missing data problem – Rod Little

I Most data sets I receive, whether small or large, contain missing data
I Usually I want to fit some kind of regression model and I don’t want to have to

throw away data
I I don’t really care too much about the missing data values, but I do care about

getting the parameter estimates or predictions correct
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Structure of this class

I Learn some of the missing data analysis jargon
I See an overview of how missing data analysis works (i.e. single and multiple

imputation)
I Learn to think about types of missing data analysis that might be appropriate for

your work
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A simple example - Whiteside data

Task: understand the relationship between gas consumption and temperature

## Temp Gas
## 1 -0.8 7.2
## 2 -0.7 6.9
## 3 0.4 6.4
## 4 2.5 6.0
## 5 2.9 NA
## 6 3.2 5.8

plot(whiteside2)
abline(v = 2.9)
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Questions to think about

I Why is that observation missing?
Was it a coding mistake or was there
something special about that
particular value?

I How might we fill it in?
I Do I care about that actual value or

am I more interested in a statistical
model of this relationship?

plot(whiteside2)
abline(v = 2.9)
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Missing data in regression models
I The pattern of missingness might be

more complex
I We might have some missing

response variables
I We might have various combinations

of missing explanatory variables
I If these missing variables are at the

edges of the parameter space, or are
particularly influential on the
response, they might have more
influence on the fitted models

plot(whiteside2, ylim = c(1.5, 8))
axis(side = 1, at = c(0.2, 2.9, 3.3, 7.6),

labels = FALSE, col.ticks = 'red')
axis(side = 2, at = c(7.8, 4.3, 5.5),

labels = FALSE, col.ticks = 'red')

0 2 4 6 8 10

2
3

4
5

6
7

8

Temp
G

as

10 / 27



Simple options for completing the analysis

I Delete all the missing observations (listwise deletion or complete.cases)
I Try to analyse just pairs of the data points that are complete (pairwise deletion or

pairwise.complete.obs)
I Just take the overall mean/median of that variable
I Fit a model and then use it to predict the missing values (or the inverse of it for

missing covariates)
I Fill in the missing values from above or below
I Set values to zero and include a missingness indicator (1 or 0) as an extra covariate
I Weight the observations so that the analysis is biased to those observations in

classes most likely to be missing
I . . .

These methods tend to have poor or unknown bias and calibration properties for
predicting missing values so we will try to use more formal/established methods.
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Two important bits of maths we need for this session

For events A,B,C :

p(A,B|C) = p(A|B,C)× p(B|C)

(This comes from Bayes’ theorem)

If
(

y1
y2

)
∼ N

([
µ1
µ2

]
,

[
Σ11 Σ12
Σ21 Σ22

])
then:

y1|y2 ∼ N(µ1 + Σ12Σ−1
22 (y2 − µ2),Σ11 − Σ12Σ−1

22 Σ21)

(This can also be proved using Bayes’ theorem)
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Missing data analysis (terrible) jargon
I Missing completely at random (MCAR) means the cause of the missingness was

completely unrelated to the data. For example, the thermometer broke that day, or
Mr Whiteside forgot to take a measurement

I Missing at random (MAR) means that the missingness only depends on the
observed data. Given the observed information, the data are MCAR. For example,
there might be more missing gas consumption values on low temperature days,
because Mr Whiteside didn’t want to go outside to his gas meter.

I Not missing at random (NMAR or MNAR) means the missingness depends on
unobserved data that we do not have. For example, we might be missing gas
consumption data due to an outage that we weren’t aware of. If that information is
causally linked to temperature or gas consumption itself then it may change the
relationship.

MAR is the most common scenario and we will focus on that today, and cover MNAR in
more detail in later classes.
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Missing data analysis mathematical notation
Let:
I Y be the variables we are interested

in, as a matrix of n observations and
p variables

I Yobs the observed data
I Ymis the missing data
I M an n × p matrix that defines

which observations/variables are
missing, with mij = 1 if observation i
and variable j are missing, and 0
otherwise

I ψ some parameters governing the
missing data mechanism

Now:
I MCAR means

P(m = 1|Yobs,Ymis, ψ) = P(m = 1|ψ)

I MAR means

P(m = 1|Yobs,Ymis, ψ)

= P(m = 1|Yobs, ψ)
I NMAR means

P(m = 1|Yobs,Ymis, ψ)

must depend on Ymis
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A simple example

Suppose that the data have n = 100 and p = 2 and we use a joint normal distribution to
model the data. Suppose that the first variable y1 is complete, and the second variable
y2 contains missing values

The missingness probability is:

P(m = 1) = ψ0 + ψ1
eYobs

1 + eYobs
+ ψ2

eYmis
1 + eYmis

The different missingness mechanisms correspond to:

I MCAR: ψ1 = ψ2 = 0
I MAR: ψ2 = 0
I NMAR: ψ2 6= 0
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Simple example (cont)

n = 100
p = 2
y = mvrnorm(n, mu = rep(0,p),

Sigma = matrix(c(1, 0.5,
0.5, 1),

2, 2))
m_mcar = rbinom(n, 1, 0.5)
m_mar = rbinom(n, 1, plogis(y[, 1]))
m_nmar = rbinom(n, 1, plogis(y[, 2]))
y_mcar = y_mar = y_nmar = y
y_mcar[which(m_mcar == 1),2] = NA
y_mar[which(m_mar == 1),2] = NA
y_nmar[which(m_nmar == 1),2] = NA

boxplot(y[,2], y_mcar[,2],
y_mar[,2], y_nmar[,2],
names = c('Original', 'MCAR',

'MAR', 'NMAR'))
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Fitting a model and imputing data at the same time

I Usually, we want to estimate a model (e.g. a linear regression model) at the same
time as imputing the missing values.

I Assume θ are the parameters associated with that model, and that ψ are the
missingness parameters as before

I We need to find

p(Yobs,M|Ymis, θ, ψ) = p(m|Yobs,Ymis, ψ)× p(Yobs|Ymis, θ)

I The first term is the missingness probability model, the second term is the model
(e.g. linear regression) that we want to fit.

I The trick is to think about these in the different MCAR, MAR, and NMAR
circumstances
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Fitting models under missingness assumptions

I If MCAR:

p(Yobs,M|Ymis, θ, ψ) = p(m|ψ)× p(Yobs|Ymis, θ)

so the models are completely separate

I If MAR:

p(Yobs,M|Ymis, θ, ψ) = p(m|Yobs, ψ)× p(Yobs|Ymis, θ)

so separate provided there is no link between ψ and θ, otherwise you need both models

I If NMAR. No simplification. So you need both models to be able to fit anything
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Ignorability

I Most importantly, if you are in an MCAR or MAR situation where the parameters ψ
and θ are not linked, the missingness is known as ignorable

I This means you just need to fit the statistical bit of the model: p(Yobs|Ymis, θ)

I This is not a free lunch! Fitting this model might be extremely fiddly as you still
might need to estimate the missing data Ymis to get any results

I If you are in an MAR situation with ψ and θ linked, or in an NMAR situation, then
it is said that the missingness is non-ignorable
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Some final bits of jargon
I The pattern of missingness can sometimes be important, especially in MAR models

where you need to include the missing data as parameters

I A clever trick occurs when the missing data are monotone missing which means
that you can arrange it in a ‘staircase’ format so that once a variable is missing, it
is always missing for all of the other variables.

I This means that, if the data are MAR, you can write out the model in a chain of
equations:

p(Y |Ymis, θ) = p(Y1|Y2, . . . ,Yp, θ)× p(Y2|Y3, . . . ,Yp, θ)× . . .× p(Yp|θ)

I Why does this help? Because if the data are multivariate normal, all the
conditional distributions are known

I Monotone missing is common in longitudinal data studies where, e.g. participants
drop out of the study and so henceforth all their data is missing
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Imputation

I Filling in the missing values in a data set is called imputation

I If you fill in the missing values with ‘best’ values, this is called single imputation

I If, by contrast, you give lots of different options for the missing values, this is called
multiple imputation

I Imputation methods tend to focus on replacing the missing data values
(i.e. estimating Ymis) and less on estimating model parameters θ

The methods we will consider all involve multiple imputation.
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Regression imputation

I One of the main methods we will focus on is regression imputation

I In this method, each of the variables is used as the response in turn, and regression
against the complete cases of the other variables, i.e.

ŷij = β̂
(j)
0 +

∑
k 6=j

β̂
(j)
k yij

I In more complex versions, this might not be a linear regression, but a spline or
other complicated function

I The simplest version is a single imputation method
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Stochastic regression imputation

I The simple regression imputation method can be improved with simulation methods

I For example, For a linear regression model with residual variance σ2, we can include
that uncertainty in the prediction of the missing value

I We also have uncertainty in the estimation of the regression parameters

So

Var(yj) = σ2
(
1 + X ∗(XT X )−1(X ∗)T

)
where X ∗ is the matrix of explanatory variables associated with the missing value and
X = Yi ,−j
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Whiteside example
library(mice)
plot(whiteside2)
abline(m<-lm(Gas~Temp, data=whiteside2))
points(2.9, predict(m, data.frame(Temp = 2.9)), col = 'red', pch = 1)
imp_2 = mice(whiteside2, m=5, meth="norm.nob", maxit=1, print = FALSE)
points(rep(2.8, 5), imp_2$imp$Gas, col = 'blue', pch = 2)
imp_3 = mice(whiteside2, m=5, meth="norm", maxit=1, print = FALSE)
points(rep(3.0, 5), imp_3$imp$Gas, col = 'green', pch = 3)
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Other types of MI - predictive mean matching

I An alternative idea to that on the previous slide is called predictive mean
matching

I This is where we find the closest data points to missing values and use those as the
predicted missing values

I A further extension is to use the distance to the regression line as a weight and
sample from the probability distribution to replace values as above.

I This works well if the sample size is large and so there are lots of candidate donors

I (Also known as Hot Deck imputation, cf Cold Deck where external data is used
to impute)
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General guidelines on imputation

I If the missingness is ignorable, we need to fit a model of the form: p(Yobs|Ymis, θ)

I We should try to use as much of the observed information as possible to build that
model

I We should avoid using single imputation

I Any models we build using the imputed data must take account of the uncertainty
in it

(More later on how to evaluate imputations)
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Summary so far

I The different types of imputation are MCAR (missing completely at random), MAR
(missing at random), and NMAR (not missing at random)

I If the missingness mechanism is ignorable (MCAR/MAR + an extra assumption)
we can fit a standard statistical model to the data to try to estimate the missing
values and/or estimate the model parameters

I In the next session we will talk about how to build these models using both the
likelihood and mice techniques
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