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In this class ...

» Revision of last week
» A bit more on Bayesian models and output

» Some different types of missingness: longitudinal data analysis and time series
analysis

> Not missing at random models: pattern mixture models and selection models
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A reminder of terms

» Missing completely at random (MCAR) means the cause of the missingness was
completely unrelated to the data.

» Missing at random (MAR) means that the missingness only depends on the
observed data. Given the observed information, the data are MCAR.

» Not missing at random (NMAR or MNAR) means the missingness depends on
unobserved data that we do not have.

If you are in an MCAR or MAR situation where the parameters 1) and 6 are not linked,
the missingness is known as ignorable
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Missing data analysis mathematical notation

Let: Now:
» Y be the variables we are interested » MCAR means
in, as a matrix of n observations and
p variables P(m = 1|Yopbs» Ymis: ¥) = P(m = 1|)
> Y, pbs the observed data > MAR means
» Ymis the missing data

» M an n x p matrix that defines
which observations/variables are
missing, with m;; = 1 if observation i
and variable j are missing, and 0 = P(m=1|Yge, v)
otherwise

» 1) some parameters governing the
missing data mechanism

P(m = 1[Ysps: Yimis: ¥)

» NMAR means

P(m = 1|Yypbs: Yimis: ¥)
depends on Y,is
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Reminder of JAGS code

model_code ='
model {
# Likelihood
for(i in 1:N) {
y[i] ~ dnorm(intercept + slope*x[i], residual_sd~-2)
}
# Priors
intercept ~ dnorm(0,107-2)
slope ~ dnorm(0,107-2)
residual_sd ~ dunif(0,10)
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Running a JAGS model

library(R2jags)
mod_par = c("intercept",
"slope“,

"residual_sd")
model_run = jags(data =
list(N = length(y),
y =9, X =X),
parameters.to.save =
mod_par,
model.file =

textConnection(model_code))
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JAGS for binary logistic regression

model_code = '
model
{
# Likelihood
for (i in 1:N) {
y[i] ~ dbern(p([il)
logit(p[i]) = alpha + beta * x[i]
+
# Priors
alpha ~ dnorm(0, 57-2)
beta ~ dnorm(0, 57-2)
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Example for missing data

library(mice)

y = as.integer(is.na(nhanes$chl))
x = nhanes$age

plot(jitter(x, 0.1),jitter(y, 0.1))
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Running the JAGS model

library(R2jags)
mod_par = c("p", "alpha", "beta')
model_run = jags(data =
list(N = length(y),
y =y, x=2x),
parameters.to.save =
mod_par,
model.file =

textConnection(model_code))
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Looking at the output

plot (model_run)

Bugs model at "4", fit using jags, 3 chains, each with 2000 iterations (first 1000 discarded)
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A quick note on JAGS output

> There are three key parts of the algorithm that affect how good the posterior
samples are:

1. The starting values you chose. If you chose bad starting values, you might need to
discard the first few thousand iterations. This is known as the burn-in period

2. The way you choose your new parameter values. If they are too close to the previous
values the MCMC might move too slowly so you might need to thin the samples out
by taking e.g. every 5th or 10th iteration

3. The total number of iterations you choose. Ideally you would take millions but this
will make the run time slower
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Plotting the output
You can plot the iterations for all the parameters with traceplot, or for just one with
e.g.

post = model_run$BUGSoutput$sims.list
plot(post$alpha, type = '1')

post$alpha
L
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Index

A good trace plot will show no patterns or runs, and will look like it has a stationary
mean and variance
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How many chains?

» Beyond increasing the number of iterations, thinning, and removing a burn-in
period, JAGS automatically runs multiple chains

» This means that they start the algorithm from 3 or 4 different sets of starting
values and see if each chain converges to the same posterior distribution

» If the MCMC algorithm has converged then each chain should have the same mean
and variance.

» JAGS reports the Rhat value, which is close to 1 when all the chains match

> It's about the simplest and quickest way to check convergence. If you get Rhat
values above 1.1, run your MCMC for more iterations
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Missingness in longitudinal data

library(nlme) plot (Orthodont)

head(Orthodont) € et e
## Grouped Data: distance ~ age | Subjecté 1 /L. o>
## distance age Subject Sex 3 T A A1 e
# 1 26.0 8 MO1 Male P Ea tat :
## 2 25.0 10 Mol Male g | M16 | MOS JMOZ M11 | MO7 | MO8 | MO3 | M12 | M13 | M14 | M09 | M15 | M06 | M04 |
## 3 29.0 12 MO1 Male § [
## 4 31.0 14 MO1 Male L2 ANNAAAAA VT
## 5 21.5 8 MO2 Male §°1 ! i I
## 6 22.5 10 MO2 Male

Age (yr)

These data are distance measures from
x-ray images of the skull. We also have
age, sex, and repeated individual
measurements
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A simple model for these data

Fit a mixed effects (hierarchical) model of the form:
distance;; ~ N(aj + 8 x (age; — age), 0?)

aj ~ N(tta, 03)
where:

» distance;; is the distance measurement for observation i for individual j

> age;; is the age associated observation i for individual j

» o; is a random intercept term for each individual j with some overall mean p, and
a variability between individuals o,
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A JAGS model
model_code = '
model
{
# Likelihood
for (i in 1:N) {
y[i] ~ dnorm(alphal[person[i]] + beta * (agel[i]l - mean(age)), sigma™-2)
}
# Prior for intercept
for(j in 1:N_people) {
alphal[j] ~ dnorm(mu_alpha, sigma_alpha”-2)
}
# Priors on other parameters
mu_alpha ~ dnorm(0, 1007-2)
beta ~ dnorm(0, 107-2)
sigma ~ dgamma(1,1)
sigma_alpha ~ dgamma(1,1)
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Running this model

mod_par = c("mu_alpha", "alpha", "beta", "sigma", "sigma_alpha")

model_run = jags(data =
1list(N = nrow(Orthodont),
N_people = length(unique(Orthodont$Subject)),
y = Orthodont$distance,
age = Orthodont$age,
person = Orthodont$Subject),
parameters.to.save = mod_par,
model.file = textConnection(model code))
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Output

plot (model_run)

Bugs model at "5", fit using jags, 3 chains, each with 2000 iterations (first 1000 discarded)
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What if some of the data are missing?

» Some distance measurements or ages might be missing. (Subject being missing
seems unlikely but possible)

» These might just be individual values (item non-response or analysis dropout),
possibly MCAR or MAR

> We might get treatment discontinuation where some subjects no longer take
part. This gets us back to a monotone missingness pattern

> We might get an alternative form of dropout if growth is irregular and subjects are
removed form the study - this might be an example of MNAR

» All of these are pretty easy to model in JAGS (especially if MAR)
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Adding missing values

Set a large number of the values across the data set to missing

set.seed(123) plot (Orthodont?2)
Orthodont2 = Orthodont b ‘161 o Lo ‘l‘m‘); o P, ‘16;‘ A Ly ‘162‘ o L
Orthodont2$distance [sample(1: M
nrow (Orthodont2), 40)] = NA | | 1 +
E |l 7 .
Orthodont2$age [sample (1: € g
nrow(orthodont2) s 20)] = NA % M14 M09 M15 MO6 M04 Mo1 M10 - F10 F09
. B ( L /ﬁ//ﬁ I
These data are distance measures from e |4/ | | J
x-ray images of the skull. We also have s |
age, seX’ and repeated IndIVIduaI ? M16 MO05 M02 M11 M07 M08 MO3 M12 M13
measurements | A
e T y a o// o 7/3 // /

Age (yr)
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New model
model_code = '

model

{

# Likelihood
for (i in 1:N) {

y[i] ~ dnorm(alpha[person[i]] + beta * (age[i] - mean(age)),

}
# Prior for intercept
for(j in 1:N_people) {
alpha[j] ~ dnorm(mu_alpha, sigma_alpha”-2)
}
# Prior for missing values
for(k in 1:N_miss_age) {
age[miss[k]] ~ dunif(min_age, max_age)
}
# Priors on other parameters
mu_alpha ~ dnorm(0, 1007-2)
beta ~ dnorm(0, 107-2)
sigma ~ dgamma(l 1)

DR TN T, T 4 4\

sigma~-2)
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Running the model

mod_par = c("mu_alpha", "alpha", "beta", "sigma",
"sigma_alpha", "y", "age")
model_run = jags(data =
list(N = nrow(Orthodont2),
N_people = length(unique(Orthodont2$Subject)),
N_miss_age = sum(is.na(Orthodont2$age)),
miss = which(is.na(Orthodont2$age)),
y = Orthodont2$distance,
age = Orthodont2$age,
min_age = min(Orthodont2$age, na.rm
max_age = max(Orthodont2$age, na.rm
person = Orthodont2$Subject),
parameters.to.save = mod_par,
model.file = textConnection(model_code))

TRUE) ,
TRUE) ,
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Output

plot (model_run)

Q 80% interval fos each chain
« age)

Bugs model at "6", fit using jags, 3 chains, each with 2000 iterations (first 1000 discarded)

400

alpl

if . —
Eﬁgﬁﬁhai'

L Rt o

* array lrunca?ed for lack of spaczeOD

Fresses

15 2+

medians and 80% intervals

15 . . . .
» age 10} . P ot

alpha 25

beta glé
—

mu_alpha

-

sigma_alpha 2
15

.3

123456786910

\

N
SERER
Ll L i W u u

: ht et et
1

2

R R AR

1

e

'

+

+
16

.t

R I

8 2 2 24 2

. Thppteatte, e
2345678910 12 14 16 18 2 2 2 2% B N L W B B 4

bett et

12345678010 12 14 16 18 2 22 24 2 28 30 W 34 I B 40

23/43



Missing data in time series models
» In a time series analysis we usually have a model of the form:

Yt = f(y;vxt) + €t

where y; represents previous values of the time series and X represents additional
covariates

» The response y; might be multivariate

» Missingness might occur in y, in X, or even in t

» Some tricks:

> If you have many missing observations you could move to a continuous time series

model

> JAGS (and Stan) will usually work fine if there are missing values in the time series
without any change to the model

» With missing X values the approach on the previous slides will work fine

» With missing t values this starts to get fiddly, but it's still possible provided you can
put a prior distribution on t
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The imputeTS package

» There is a nice R package for single imputation of time series called imputeTS
» It will impute the missing values in y; via various methods:

» na_kalman Missing Value Imputation by Kalman Smoothing

» na_locf Missing Value Imputation by Last Observation Carried Forward
» na_ma Missing Value Imputation by Weighted Moving Average

» na_seadec Seasonally Decomposed Missing Value Imputation

» na_seasplit Seasonally Splitted Missing Value Imputation

» Running the stochastic methods multiple times might allow for multiple imputation

» More details here: https://steffenmoritz.github.io/imputeTS/
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Back to MNAR

» For MNAR data we need to build a model that accounts for the missingness
mechanism as well as the prediction model

» There are two popular approaches selection models and pattern-mixture models
» The two approaches correspond to the way in which we factor the joint distribution

» For regression models, we now need to consider the full data set y = (Y,ps, Yimis)
so we are interested in finding the likelihood:

p(.ya M’H,ﬂ},X) = H p(yia mi|9a 1/%Xi)
i=1
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Selection and pattern mixture models
> We are going to factor this model two different ways:

» The Selection model way:

p(yi, mi|0,%, xi) = p(yi|xi, 0) x p(mj|x;, yi, )

Here the first term is just a standard regression model, and the second term is a binary
regression which has y as a covariate (with x) in the model. Both models have to be
fitted at the same time

» The Pattern mixture model way:

p(.yl'a mi|95w7xf) = P(Yi’Xi’miv‘g) X P(mi\Xiﬂ/))

Now the first distribution is a regression model that is dependent on whether the data
are missing or not, and the second is just a very simple logistic regression model based on

covariates x. This usually involves fitting only the regression model because m; is data
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Issues with pattern mixture models

Here's a simple example. Suppose we define a pattern mixture model as:

yilmi, xi, 0 ~ N(a{™) 4 g(mi)x; (5(m))2)

This means that there are different regression parameters for whether the data is missing
or not. Of course, the problem is that you do not have any data y; when the data is

missing (m; = 1)!!!

> We need extra assumptions to fit this model
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Issues with selection models

Here's the same example as a selection model

Yilxi, 0 ~ N(a + Bxi, 0°)
mi|x;, yi, ¥ ~ Binom(1, p;), logit(p;) = v + 0x; + wy;

This means that the coefficients of the binary missingness indicator will also be hard to
estimate if there is a high degree of missingness in y;

(The probit version of this model is often known as a Heckman model)
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Some notes on pattern mixture and selection models

> These models can extend to multivariate y values exactly as in the multiple
imputation scenarios we met before.

» You can create hybrid versions of the two (called pattern-set mixture models) but
this gets fiddly

P It's called a pattern mixture model because it's essentially a mixture of two
regression models (one for the missing and one for the not missing data)

» | tend to find selection models easier to understand (and fit). Also if w = 0 in the
previous slide then you end up back at MAR!

» It's hard to compare between the two approaches in most real-world scenarios
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Some simplifications

» A simpler version of the pattern mixture model is:
| mi, xi, 0 ~ N(o{™) + Bx;, 0?)
Yilmi, Xi, o Xiy O

. so only a changing intercept between missing and non-missing data

> This means that a simple statistic such as a{™) — (™) will tell you how the
missing data are shifted up or down compared to the observed data

» Little and Rubin argue that the pattern mixture model is better because the
interpretation of the parameter w in the selection model is harder, and because
imputed data values are easier to simulate from

» However it needs strong assumptions on the missing intercept to fit properly
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Including extra assumptions

These models often need extra assumptions to fit well. These might include:

» Extra (smaller) data sets on missing values, such as following up non-response
» Imposing restrictions on the model parameters
» Being Bayesian, and putting prior distributions on the parameters
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Bayesian approaches to pattern mixture models

> A common approach is to put a prior distribution on the regression parameters for
the missing observations
» In the simpler intercept only example we have:

y,-]m,-,x,-, 0~ N(oz(m") + ﬁX,', 0'2)
> A good prior distribution might be:

olm)  N(alm) 52)

P> This means it is centered around the non-missing intercept
» The parameter o, might also have a prior distribution
> It may also be set to be a function of a(™), e.g. g, = kalm™)
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Example: a selection model in JAGS
model_code = '

model

{

# Likelihood
for (i in 1:N) {
y[i] ~ dnorm(alpha + beta * x[i], sigma™-2)
m[i] ~ dbern(p([il)
logit(p[i]) = gamma + omega * (y[i] - mean(y))
}
# Priors for regression model
alpha ~ dnorm(0, 1007-2)
beta ~ dnorm(0, 1007-2)
sigma ~ dgamma(l, 1)
# Priors for missingness model
gamma ~ dnorm(0, 57-2)
omega ~ dnorm(0, 57-2)
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Some selection model NMAR data

set.seed(123) plot(x, y_true)
N = 100 points(x, y, col = 'red', pch = 19)
x = sort(runif(N)) .
alpha = 3 .
beta = 2 C
sigma = 0.2 2 . e IR
y_true = rnorm(N, alpha + beta * x, H o _oo°%3

sigma) o A
gamma = -0.5 . B
omega = 1 AN
m = rbinom(N, 1, plogis(gamma + ER R o%

omega * (y_true - o o o o os 0
mean (y_true))))
y = y_true
y[m==0] = NA
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Output

Bugs model at "4", fit using jags, 3 chains, each with 2000 iterations (first 1000 discarded)
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How

Frequency

Frequency

well did it estimate the model parameters

0 200

0 200
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Intercept
T T T T T
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pars$alpha

Miss intercept

-15 -1.0 -0.5 0.0

pars$gamma

Frequency

Frequency

0 300

0 200

Slope

14 1.6 1.8 2.0 2.2 2.4
pars$beta
Miss coef of y
T T T T T T T
0.0 0.5 1.0 15 2.0 25 3.0
pars$omega

37/43



And now a pattern-mixture model

model_code = '
model

{

# Likelihood
for (i in 1:N) {
# Note: m[i] = 1 if not-missing and m[i] = 2 if missing
y[i] ~ dnorm(alpha[m[i]] + beta * x[i], sigma”-2)
}
# Priors for regression model
alpha[1] ~ dnorm(0, 1007°-2)
# This is the key prior
alpha[2] ~ dnorm(alpha[l] + 0.5, sigma_alpha”-2)
beta ~ dnorm(0, 1007-2)
sigma ~ dgamma(l, 1)
sigma_alpha ~ dgamma(l, 1)
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Some pattern mixture model NMAR data

set.seed(123) plot(x, y_true)

N = 100 points(x, y, col = 'red', pch = 19)

x = sort(runif (N)) .

gamma = -0.5 £y >

delta = 3 . "

m = rbinom(N, 1, plogis(gamma + ° ;
delta * (x - mean(x)))) + 1 2 %]

alpha = c(3,3.5) < ..

beta = 2 ., 'h B

sigma = 0.2 17 ﬂ*.j -

y_true = rnorm(N, alpha[m] + g "o’

beta * x, sigma) & : o ! ‘ ‘ ‘
y = y_true
y [m==2] = NA
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Output
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How well did it estimate the model parameters

Intercept (obs) Intercept (miss)
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Non-ignorable missing data in mice

» The mice package also allows for some NMAR type multiple imputation

P There is another package called miceMNAR that specialises in this

> It requires you to specify the regression-type model simultaneously with the
imputation

P> As before, it uses the fully conditional specification type model

» There are several different functions including mice.impute.ri and
mice.impute.mnar.logreg

» Most of the functions seem to contain examples

» This is very new (only implemented in 2020)
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Summary

» Missing not at random data is harder to fit because it usually requires some extra
assumptions about the missingness mechanism and makes the model more

complicated

> We have met the two main types; selection models and pattern mixture models

» They differ in how they decompose the likelihood, and how the results can be
interpreted

» All these models can be fitted in JAGS and Stan; a version can be fitted in mice
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