Introduction to cosimmr

Emma Govan

10 April, 2024

Learning outcomes

- Understand how cosimmr extends simmr

Learning outcomes

- Understand how cosimmr extends simmr
- How to use cosimmr:

Learning outcomes

- Understand how cosimmr extends simmr
- How to use cosimmr:
- Loading data into cosimmr

Learning outcomes

- Understand how cosimmr extends simmr
- How to use cosimmr:
- Loading data into cosimmr
- Running cosimmr

Learning outcomes

- Understand how cosimmr extends simmr
- How to use cosimmr:
- Loading data into cosimmr
- Running cosimmr
- Outputs from cosimmr

Revision: simmr model

- The simmr model defined earlier:

$$
y_{i j} \sim N\left(\frac{\sum_{k=1}^{K} p_{k} q_{j k}\left(\mu_{s, j k}+\mu_{c, j k}\right)}{\sum_{k=1}^{K} p_{k} q_{j k}}, \frac{\sum_{k=1}^{K} p_{k}^{2} q_{j k}^{2}\left(\sigma_{s, j k}^{2}+\sigma_{c, j k}^{2}\right)}{\left(\sum_{k=1}^{K} p_{k} q_{j k}\right)^{2}}+\sigma_{j}^{2}\right)
$$

Revision: simmr model

- The simmr model defined earlier:

$$
y_{i j} \sim N\left(\frac{\sum_{k=1}^{K} p_{k} q_{j k}\left(\mu_{s, j k}+\mu_{c, j k}\right)}{\sum_{k=1}^{K} p_{k} q_{j k}}, \frac{\sum_{k=1}^{K} p_{k}^{2} q_{j k}^{2}\left(\sigma_{s, j k}^{2}+\sigma_{c, j k}^{2}\right)}{\left(\sum_{k=1}^{K} p_{k} q_{j k}\right)^{2}}+\sigma_{j}^{2}\right)
$$

- We also have prior distributions on p (CLR) and σ^{2} (gamma)

The CLR prior

- the centralised log ratio (CLR) or softmax transformation:

$$
\left[p_{1}, \ldots, p_{K}\right]=\left[\frac{\exp \left(f_{1}\right)}{\sum_{j} \exp \left(f_{j}\right)}, \ldots, \frac{\exp \left(f_{K}\right)}{\sum_{k} \exp \left(f_{k}\right)}\right]
$$

The CLR prior (continued)

- In CLR regression, we put a prior on the f_{k}

The CLR prior (continued)

- In CLR regression, we put a prior on the f_{k}
- The CLR transformation guarantees that all the dietary proportions will sum to 1

The CLR prior (continued)

- In CLR regression, we put a prior on the f_{k}
- The CLR transformation guarantees that all the dietary proportions will sum to 1
- In simmr the prior on f_{k} is:

$$
f \sim m v n\left(\mu_{0}, \Sigma_{0}\right)
$$

Expanding the model

- We currently assume all consumers are identical

Expanding the model

- We currently assume all consumers are identical
- We might want to include covariates (height, weight, etc)

Random effects for individuals

- We don't necessarily need a grouping structure (e.g. pack, sex, etc) to be able to include random effects in a SIMM

Random effects for individuals

- We don't necessarily need a grouping structure (e.g. pack, sex, etc) to be able to include random effects in a SIMM
- In a SIMM we might reasonably assume that every consumer is eating something slightly different and want to quantify the overall mean diet as well as the variability between consumers

Random effects for individuals

- We don't necessarily need a grouping structure (e.g. pack, sex, etc) to be able to include random effects in a SIMM
- In a SIMM we might reasonably assume that every consumer is eating something slightly different and want to quantify the overall mean diet as well as the variability between consumers
- We can do this by modelling each consumer's dietary proportion $p_{i k}$ with a normally distributed prior on the CLR transform of p

How we include covariates

- We rewrite f so it incorporates a matrix of covariate values.

How we include covariates

- We rewrite f so it incorporates a matrix of covariate values.
- f is given as

$$
f_{i k}=X_{i c} \beta_{c k}
$$

How we include covariates

- We rewrite f so it incorporates a matrix of covariate values.
- f is given as

$$
f_{i k}=X_{i c} \beta_{c k}
$$

- Where X is the matrix of covariate values and β is given a multivariate normal distribution.

$$
\beta \sim m v n\left(\mu_{\beta}, \Sigma_{\beta}\right)
$$

Why covariates are useful

- Avoid pseudoreplication (Hulbert 1984)

Why covariates are useful

- Avoid pseudoreplication (Hulbert 1984)
- Samples may be replicated but treatments aren't!

The updated model

$$
y_{i j} \sim N\left(\frac{\sum_{k=1}^{K} p_{i k} q_{k j}\left(\mu_{c, k j}+\mu_{s, k j}\right)}{\sum_{k=1}^{K} p_{i k} q_{k j}}, \frac{\sum_{k=1}^{K} p_{i k}^{2} q_{k,}^{2}\left(\sigma_{c, k j}^{2}+\sigma_{s, k j}^{2}\right)}{\sum_{k=1}^{K} p_{i k}^{2} q_{k j}^{2}}+\sigma_{j}^{2}\right)
$$

The updated model (cont)

- This model allows users to include covariates

The updated model (cont)

- This model allows users to include covariates
- We also get unique results for each consumer

The package cosimmr

Background of the package

- Uses Fixed Form Variational Bayes

Background of the package

- Uses Fixed Form Variational Bayes
- This is an optimisation-based algorithm

Background of the package

- Uses Fixed Form Variational Bayes
- This is an optimisation-based algorithm
- Quicker than sampling-based algorithms (e.g. JAGS)

FFVB

- Works by minimising the divergence between an assumed distribution and the posterior distribution

FFVB

- Works by minimising the divergence between an assumed distribution and the posterior distribution
- Tran et al 2021 is a useful paper if you'd like more detail!

How to use cosimmr

- https://github.com/emmagovan/cosimmr

How to use cosimmr

- https://github.com/emmagovan/cosimmr
- Might need to currently download individual functions - work in progress!

Structure of data to be loaded in

cosimmr_in <- cosimmr_load(formula, source_names, source_means, source_sds, correction_means, correction_sds, concentration_means, scale_x = TRUE)

- Same format as simmr

Structure of data to be loaded in

```
cosimmr_in <- cosimmr_load(formula,
                                    source_names,
                                    source_means,
                                    source_sds,
                                    correction_means,
                                    correction_sds,
                                    concentration_means,
                                    scale_x = TRUE)
```

- Same format as simmr
- Main difference is the formula

Structure of data to be loaded in

$$
\begin{aligned}
\text { cosimmr_in <- cosimmr_load } & \text { formula, } \\
& \text { source_names, } \\
& \text { source_means, } \\
& \text { source_sds, } \\
& \text { correction_means, } \\
& \text { correction_sds, } \\
& \text { concentration_means, } \\
& \text { scale_x }=\text { TRUE) }
\end{aligned}
$$

- Same format as simmr
- Main difference is the formula
- To run the same as simmr just use mixture ~ 1

Structure of data to be loaded in

$$
\begin{aligned}
\text { cosimmr_in <- cosimmr_load } & (f o r m u l a, ~ \\
& \text { source_names, } \\
& \text { source_means, } \\
& \text { source_sds, } \\
& \text { correction_means, } \\
& \text { correction_sds, } \\
& \text { concentration_means, } \\
& \text { scale_x }=\text { TRUE) }
\end{aligned}
$$

- Same format as simmr
- Main difference is the formula
- To run the same as simmr just use mixture ~ 1
- Input as mixture ~ covariate1 + covariate2

Structure of data to be loaded in

$$
\begin{aligned}
\text { cosimmr_in <- cosimmr_load } & (f o r m u l a, ~ \\
& \text { source_names, } \\
& \text { source_means, } \\
& \text { source_sds, } \\
& \text { correction_means, } \\
& \text { correction_sds, } \\
& \text { concentration_means, } \\
& \text { scale_x }=\text { TRUE) }
\end{aligned}
$$

- Same format as simmr
- Main difference is the formula
- To run the same as simmr just use mixture ~ 1
- Input as mixture ~ covariate1 + covariate2
- scale_x for covariates

Structure of data to be loaded in

```
cosimmr_in <- cosimmr_load(formula,
                source_names,
                source_means,
                source_sds,
                correction_means,
                correction_sds,
                concentration_means,
                    scale_x = TRUE)
```

- Same format as simmr
- Main difference is the formula
- To run the same as simmr just use mixture ~ 1
- Input as mixture ~ covariate1 + covariate2
- scale_x for covariates
- as.factor for categorical variables

Running cosimmr

```
cosimmr_out = cosimmr_ffvb(cosimmr_in)
```

- Again similar to simmr

Running cosimmr

```
cosimmr_out = cosimmr_ffvb(cosimmr_in)
```

- Again similar to simmr
- Can adjust priors and FFVB parameters if you wish

Alligator Data example

- To illustrate we will use data that comes with cosimmr

Alligator Data example

- To illustrate we will use data that comes with cosimmr
- From Nifong et al, 2015

Loading Data

```
data("alligator_data")
cosimmr_alli <-cosimmr_load(
    formula = as.matrix(alligator_data$mixtures) ~ alligator_data$length,
    source_names = alligator_data$source_names,
    source_means = as.matrix(alligator_data$source_means),
    source_sds = as.matrix(alligator_data$source_sds),
    correction_means = as.matrix(alligator_data$TEF_means),
    correction_sds = as.matrix(alligator_data$TEF_sds))
```


Isospace Plot

- We can create an isospace plot to confirm all the individuals lie within the mixing polygon, similarly to simmr
plot(cosimmr_alli)

Isospace Plot

- We can create an isospace plot to confirm all the individuals lie within the mixing polygon, similarly to simmr
plot(cosimmr_alli)
- Like simmr, its important to check that all individuals lie within the mixing polygon

Isospace Plot

- We can create an isospace plot to confirm all the individuals lie within the mixing polygon, similarly to simmr
plot(cosimmr_alli)
- Like simmr, its important to check that all individuals lie within the mixing polygon
- If they don't it indicates something is wrong - perhaps with data collection or with TEF calculation

Isospace Plot

Tracers plot

Running cosimmr

```
cosimmr_alli_out = cosimmr_ffvb(cosimmr_alli)
```

Outputs

Summary

```
summary(cosimmr_alli_out, type = c("statistics"))
Summary for Individual 1
    mean sd
Marine 0.748 0.017
Freshwater 0.252 0.017
d13C 2.010 0.504
d15N 0.549 0.200
- Defaults to info on first individual
```


Summary

```
summary(cosimmr_alli_out, type = c("statistics"))
Summary for Individual 1
    mean sd
Marine 0.748 0.017
Freshwater 0.252 0.017
d13C 2.010 0.504
d15N 0.549 0.200
- Defaults to info on first individual
- Other options - quantiles, correlations
```


Summary

```
summary(cosimmr_alli_out, type = c("statistics"))
Summary for Individual 1
    mean sd
Marine 0.748 0.017
Freshwater 0.252 0.017
d13C 2.010 0.504
d15N 0.549 0.200
- Defaults to info on first individual
- Other options - quantiles, correlations
- Gives an overview of their diet
```


Plots

- Multiple options
plot(cosimmr_alli_out,

$$
\begin{aligned}
& \text { type = c("isospace", "beta_histogram", "p_ind"), } \\
& \text { ind =1) }
\end{aligned}
$$

Plots

- Multiple options
plot(cosimmr_alli_out, type $=c($ "isospace", "beta_histogram", "p_ind"),
ind $=1)$
- Again specify the individual

Isospace Plot

Tracers plot

Beta Histogram

beta histogram plot: covariate 1

- This is useful for seeing what covariates are "important" to your model

Proportions Plot

p_ind plot: individual 1

- See estimates for food being consumed by an individual

Accessing outputs for your own plots

- Easily done!
cosimmr_alli_out\$output\$BUGSoutput\$sims.list\$p

Accessing outputs for your own plots

- Easily done!
cosimmr_alli_out\$output\$BUGSoutput\$sims.list\$p
- Will not be a matrix!

Accessing outputs for your own plots

- Easily done!
cosimmr_alli_out\$output\$BUGSoutput\$sims.list\$p
- Will not be a matrix!
- no.individuals $*$ no.samples $*$ no.isotopes

Proportions changing over covariate
Marine

Proportions changing over covariate
Freshwater

Predict function

```
x_pred = data.frame(length = c(100,210,302))
print(x_pred)
## length
## 1 100
## 2 210
## 3 302
alli_pred = predict(cosimmr_alli_out, x_pred)
```


Summary

summary(alli_pred, ind $=c(1,2,3)$, type $=$ "statistics")
Summary for Individual 1

	mean	sd
$[1]$,	0.219	0.022
$[2]$,	0.781	0.022

Summary for Individual 2

	mean	sd
$[1]$,	0.717	0.029
$[2]$,	0.283	0.029

Summary for Individual 3
mean sd
[1,] 0.940 .016
$[2]$,

Plot

plot(alli_pred, type = "beta_boxplot")
beta boxplot: covariate 1

Speed Comparison to MixSIAR

Unit: seconds

expr	min	lq	mean	median	uq	max
cosimmr	111.0862	120.658	125.8095	126.5247	132.2483	139.9875
JAGS	1329.9057	1348.693	1383.0132	1378.8913	1409.9970	1449.0150

- Designed to be easy to use - don't need to know details of the algorithm working in the background!

Speed Comparison to MixSIAR

Unit: seconds

expr	min	lq	mean	median	uq	max
cosimmr	111.0862	120.658	125.8095	126.5247	132.2483	139.9875
JAGS	1329.9057	1348.693	1383.0132	1378.8913	1409.9970	1449.0150

- Designed to be easy to use - don't need to know details of the algorithm working in the background!
- Quicker than MixSIAR

Summary

- We looked at the differences between simmr and cosimmr

Summary

- We looked at the differences between simmr and cosimmr
- We showed how to include random effects in a SIMM

Summary

- We looked at the differences between simmr and cosimmr
- We showed how to include random effects in a SIMM
- We learned how to run code in cosimmr

References

- Nifong, J. C., C. A. Layman, and B. R. Silliman. 2015. Size, sex and individuallevel behaviour drive intrapopulation variation in cross-ecosystem foraging of a top-predator. Journal of Animal Ecology 84:35-48.
- Tran, Minh-Ngoc, Trong-Nghia Nguyen, and Viet-Hung Dao. "A practical tutorial on variational Bayes." arXiv preprint arXiv:2103.01327 (2021).
- Hulbert, Stuart H. "Pseudoreplication and the design of ecological field experiments." Ecological monographs 54.2 (1984): 187-211.

Any questions, bugs found, suggestions - please email me
emmagovan@gmail.com or report at
https://github.com/emmagovan/cosimmr/issues. Thanks!

