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Learning outcomes

I Know the difference between Frequentist and Bayesian statistics
I Understand the terms posterior, likelihood and prior. Be able to suggest suitable

probability distributions for these terms
I Be able to interpret the posterior distribution through plots, summaries, and

credible intervals

A bigger aim, either:

1. Stop using SIAR (for dietary proportions) and start writing your own JAGS code
2. Stop using SIAR and start using MixSIAR/simmr instead
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Who was Bayes?

An essay towards solving a problem on the doctrine of chances (1763)

P(A|B) = P(B|A)P(A)
P(B)
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What is Bayesian statistics?

I Bayesian statistics is based on an interpretation of Bayes’ theorem
I All quantities are divided up into data (i.e. things which have been observed) and

parameters (i.e. things which haven’t been observed)
I We use Bayes’ interpretation of the theorem to get the posterior probability

distribution, the probability of the unobserved given the observed
I Used now in almost all areas of statistical application (finance, medicine,

environmetrics, gambling, etc, etc)

4 / 21



Why is this relevant to SIMMs?

I Easy to specify Bayesian models hierarchically in layers so that the data depend on
some parameters, which then depend on further parameters, and so on. This allows
us to create richer statistical models which will better match reality

I Almost all the modern Stable Isotope Mixing Models (SIMMs) use Bayesian
statistics

I MixSIR, SIAR, MixSIAR, simmr, IsotopeR, . . .
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What is Bayes’ theorem?

Bayes’ theorem can be written in words as:

posterior is proportional to likelihood times prior

. . . or . . .
posterior ∝ likelihood× prior

Each of the three terms posterior, likelihood, and prior are probability distributions
(pdfs).

In a Bayesian model, every item of interest is either data (which we will write as x) or
parameters (which we will write as θ). Often the parameters are divided up into those of
interest, and other nuisance parameters
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Bayes’ theorem in more detail

Bayes’ equation is usually written mathematically as:

p(θ|x) ∝ p(x |θ)× p(θ)

or, more fully:
p(θ|x) = p(x |θ)× p(θ)

p(x)

I The posterior is the probability of the parameters given the data
I The likelihood is the probability of observing the data given the parameters

(unknowns)
I The prior represents external knowledge about the parameters
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A very simple linear regression example

Suppose you had some data that looked like this:
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What you are used to doing

model = lm(stack.loss ~ Air.Flow, data = stackloss)
summary(model)

##
## Call:
## lm(formula = stack.loss ~ Air.Flow, data = stackloss)
##
## Residuals:
## Min 1Q Median 3Q Max
## -12.2896 -1.1272 -0.0459 1.1166 8.8728
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -44.13202 6.10586 -7.228 7.31e-07 ***
## Air.Flow 1.02031 0.09995 10.208 3.77e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.098 on 19 degrees of freedom
## Multiple R-squared: 0.8458, Adjusted R-squared: 0.8377
## F-statistic: 104.2 on 1 and 19 DF, p-value: 3.774e-09
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What you will now get instead

print(model_run)

## Inference for Bugs model at "4", fit using jags,
## 3 chains, each with 2000 iterations (first 1000 discarded)
## n.sims = 3000 iterations saved
## mu.vect sd.vect 2.5% 25% 50% 75% 97.5% Rhat n.eff
## intercept -43.970 6.638 -56.840 -48.110 -44.075 -39.642 -30.366 1.001 3000
## residual_sd 4.409 0.816 3.170 3.831 4.314 4.848 6.312 1.004 620
## slope 1.017 0.109 0.795 0.948 1.018 1.087 1.228 1.002 2500
## deviance 120.255 2.872 116.965 118.159 119.526 121.587 127.666 1.001 3000
##
## For each parameter, n.eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor (at convergence, Rhat=1).
##
## DIC info (using the rule, pD = var(deviance)/2)
## pD = 4.1 and DIC = 124.4
## DIC is an estimate of expected predictive error (lower deviance is better).
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Using prior information

I The Bayesian model in the previous slide divided up everything into parameters (the
intercept, slope and residual standard deviation), and data (the x and y values)

I The software in the background created a posterior probability distribution of the
parameters given the data

I The model I fitted used vague prior information. However, if we had done a
previous experiment that suggested the intercept should be around -30 with
standard deviation 5 we can put this in the model
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A model with prior information

print(model_run2)

## Inference for Bugs model at "5", fit using jags,
## 3 chains, each with 2000 iterations (first 1000 discarded)
## n.sims = 3000 iterations saved
## mu.vect sd.vect 2.5% 25% 50% 75% 97.5% Rhat n.eff
## intercept -35.157 4.110 -42.926 -37.915 -35.131 -32.489 -27.024 1.001 2000
## residual_sd 4.548 0.833 3.233 3.971 4.441 5.004 6.443 1.001 3000
## slope 0.875 0.069 0.736 0.830 0.875 0.922 1.005 1.001 2000
## deviance 121.628 3.048 117.472 119.375 121.105 123.323 128.871 1.001 3000
##
## For each parameter, n.eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor (at convergence, Rhat=1).
##
## DIC info (using the rule, pD = var(deviance)/2)
## pD = 4.6 and DIC = 126.3
## DIC is an estimate of expected predictive error (lower deviance is better).
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An early example of a Bayesian model

I To create the Bayesian version of this model I used the following JAGS code:
model_code ='
model {

# Likelihood
for(i in 1:N) {

y[i] ~ dnorm(intercept + slope*x[i], residual_sd^-2)
}
# Priors
intercept ~ dnorm(0,100^-2)
slope ~ dnorm(0,100^-2)
residual_sd ~ dunif(0,100)

}
'
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How do I specify the prior distribution?

There are several choices when it comes to specifying prior distributions:

I Informative, when there is information from a previous study, or other good external
source, e.g intercept ∼ N(−30, 52)

I Vague, when there is only weak information, perhaps as to the likely range of the
parameter e.g. intercept ∼ N(0, 1002)

I Flat, when there is no information at all about a parameter (very rare). In JAGS,
write intercept ~ dflat()

In fact, choosing the prior and choosing the likelihood are very similar problems
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Choosing likelihoods and priors
When creating Bayesian models it’s helpful to know a lot of probability distributions.
The ones we will use most are:
Distribution Range of parameter Useful for
Normal, N(µ, σ2) (−∞,∞) A good default choice
Uniform, U(a, b) (a, b) Vague priors when we only

know the range of the pa-
rameter

Binomial, Bin(k, θ) [0, k] Count or binary data re-
stricted to have an upper
value

Poisson, Po(λ) [0,∞) Count data with no upper
limit

Gamma, Ga(α, β) (0,∞) Continuous data with a
lower bound of zero

Multivariate Normal,
MVN(µ,Σ)

(−∞,∞) Multivariate unbounded
data with correla-
tion between parame-
ters/observations
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Creating the posterior distribution

I It only takes a few lines of R code (and a few more lines of JAGS code) to calculate
the posterior distribution

I However this processes will be slower and harder when we have lots of parameters,
and complicated prior distributions

I Almost always in the Bayesian world we have to resort to simulation rather than
maths to get to the posterior distribution

I This means that we obtain samples from the posterior distribution rather than
creating the probability distribution directly

I JAGS uses Markov chain Monte Carlo (MCMC) to create these samples. We will
talk about this a bit more in later lectures/discussion
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Summarising the posterior distribution

I Because we obtain samples from the posterior distribution, we can create any
quantity we like from them

I e.g. we can obtain the mean or standard deviation simply from combining the
samples together

I We can create quantiles e.g. 50% for the median
I We can create a Bayesian credible interval (CI) by calculating lower and upper

quantiles
I When the posterior distribution is messy (e.g. multi-modal) we can use a highest

posterior density (HPD) region
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Example:
From the earlier simple example. First 5 posterior samples of the slope
post_slope = model_run$BUGSoutput$sims.list$slope
post_slope[1:5]

## [1] 0.953044 1.190885 1.103919 0.825895 1.210937

The mean and standard deviation:
c(mean(post_slope),sd(post_slope))

## [1] 1.0150556 0.1085628

A 95% credible interval
quantile(post_slope,probs=c(0.025,0.975))

## 2.5% 97.5%
## 0.8011748 1.2263816
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Why is this better?

The Bayesian approach has numerous advantages:

I It’s easier to build complex models and to analyse the parameters you want directly
I We automatically obtain the best parameter estimates and their uncertainty from

the posterior samples
I It allows us to get away from (terrible) null hypothesis testing and p-values
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Some further reading

I The Bayesian bible: Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari,
A., & Rubin, D. B. (2013). Bayesian Data Analysis, Third Edition. CRC Press.

I The MCMC bible: Brooks, S., Gelman, A., Jones, G., & Meng, X. (2011).
Handbook of Markov Chain Monte Carlo. CRC Press.

I Something simpler: McCarthy, M. A. (2007). Bayesian Methods for Ecology.
Cambridge University Press.
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Summary

I Bayesian statistical models involve a likelihood and a prior. These both need to be
carefully chosen. From these we create a posterior distribution

I The likelihood represents the information about the data generating process, the
prior represents information about the unknown parameters

I We usually create and analyse samples from the posterior probability distribution of
the unknowns (the parameters) given the knowns (the data)

I From the posterior distribution we can create means, medians, standard deviations,
credible intervals, etc
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