
Differences between regression models and SIMMs

Andrew Parnell

1 / 26

Learning outcomes

▶ Be able to describe the differences and similarities between a regression model and
a SIMM

▶ Understand the likelihood and prior distribution in a basic SIMM
▶ Know how to check convergence and model performance in a Bayesian model

2 / 26

Revision: linear regression

▶ In many statistical problems we have a response variable yi observed on individuals
i = 1, . . . , N

▶ We also have an explanatory variable xi from which we want to predict yi
▶ For example, yi could be the weight of an animal, and xi could be the proportion of

a certain food source in its diet

The usual linear regression model is written as:

yi = α + βxi + ϵi

where ϵi ∼ N(0, σ2). Another way of writing this model is:

yi ∼ N(α + βxi , σ2)

3 / 26

Example: simple data
x=c(18.07, 52.59, 54.93, 79.31, 89.58)
y=c(7.89, 12.41, 13.34, 19.3, 19.52)
plot(x,y,

xlab='Percentage of food source in diet (x)',
ylab='Weight (y)',
las=1)

abline(a=4.17,b=0.18,col='red')

20 30 40 50 60 70 80 90

8

10

12

14

16

18

Percentage of food source in diet (x)

W
ei

gh
t (

y)

4 / 26

Running a linear regression in JAGS
model_code ='
model {

for(i in 1:N) {
y[i] ~ dnorm(alpha + beta*x[i],sigmaˆ-2)

}
alpha ~ dnorm(0,100ˆ-2) # Note: vague priors
beta ~ dnorm(0,100ˆ-2)
sigma ~ dunif(0,100)

}
'
data=list(x=c(18.07, 52.59, 54.93, 79.31, 89.58),

y=c(7.89, 12.41, 13.34, 19.3, 19.52),
N=5)

model_parameters = c('alpha', 'beta', 'sigma')
model_run = jags(data = data,

parameters.to.save = model_parameters,
model.file = textConnection(model_code))

module glm loaded

5 / 26

Output from linear regression
par(mfrow=c(1,2))
post = model_run$BUGSoutput$sims.list
plot(density(post$alpha),main='Posterior for alpha')
plot(density(post$beta),main='Posterior for beta')

−20 −10 0 10 20 30

0.
00

0.
10

0.
20

Posterior for alpha

N = 3000 Bandwidth = 0.308

D
en

si
ty

−0.2 0.0 0.2 0.4

0
5

10
15

Posterior for beta

N = 3000 Bandwidth = 0.004786
D

en
si

ty

6 / 26

More output from linear regression
print(model_run)

Inference for Bugs model at "4", fit using jags,
3 chains, each with 2000 iterations (first 1000 discarded)
n.sims = 3000 iterations saved. Running time = 0.029 secs
mu.vect sd.vect 2.5% 25% 50% 75% 97.5% Rhat n.eff
alpha 4.194 2.996 -1.609 3.042 4.171 5.316 10.498 1.008 3000
beta 0.175 0.047 0.076 0.158 0.175 0.193 0.267 1.010 3000
sigma 2.072 1.729 0.651 1.046 1.503 2.406 7.159 1.001 3000
deviance 18.194 5.164 12.187 14.184 16.790 20.783 31.307 1.001 3000
##
For each parameter, n.eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor (at convergence, Rhat=1).
##
DIC info (using the rule: pV = var(deviance)/2)
pV = 13.3 and DIC = 31.5
DIC is an estimate of expected predictive error (lower deviance is better).

7 / 26

How do we choose a likelihood and a prior for this situation?

▶ When we’re in a standard linear regression situation the likelihood is always a
normal distribution. When we use other likelihoods we’re running a generalised
linear model

▶ The prior for the intercept (α) and slope (β) might come from previous experiments,
or in this case are set as vague. Similarly for the residual standard deviation

▶ Sometimes re-parameterising the model will help with setting the priors. For
example, it might be easier to re-write the model as yi = α + β(xi − x̄) + ϵi . Now
the parameter α represents the mean value of y at the mean value of x (denoted
x̄). This might be easier to put a prior distribution on

8 / 26

Example 2: a generalised linear model situation, e.g. Logistic regression

▶ Suppose now that rather than observing y as the weight of the animal, we have
observed y as whether or not the animal was male (yi = 1) or female (yi = 0)

▶ The goal of the model is now to estimate the relationship between dietary
proportion and the probability of being male.

▶ When the response variable is binary we use a GLM called logistic regression. We
can write this new model as:

yi ∼ Bin(1, pi), logit(pi) = α + βxi

where logit(p) = log
(

p
1−p

)
. Note that pi directly measures the probability of each

individual being male and has to lie between 0 and 1

9 / 26

Example 2 in JAGS
Note: this isn’t a great model as the data set is very small
model_code ='
model {

for(i in 1:N) {
y[i] ~ dbin(p[i],1)
logit(p[i]) <- alpha + beta*x[i]

}
alpha ~ dnorm(0,4ˆ-2)
beta ~ dnorm(0,4ˆ-2)

}
'
data=list(x=c(18.07, 52.59, 54.93, 79.31, 89.58),

y=c(0,1,0,1,1),
N=5)

model_parameters = c('alpha', 'beta')
model_run = jags(data = data,

parameters.to.save = model_parameters,
model.file = textConnection(model_code))

Compiling model graph
Resolving undeclared variables
Allocating nodes
Graph information:
Observed stochastic nodes: 5
Unobserved stochastic nodes: 2
Total graph size: 34
##
Initializing model

10 / 26

Output

plot(model_run)

80% interval for each chain R−hat
−10

−10

−5

−5

0

0

5

5

1 1.5 2+

1 1.5 2+

1 1.5 2+

1 1.5 2+

1 1.5 2+

1 1.5 2+
alpha
beta

medians and 80% intervals

alpha

−10

−5

0

beta

0

0.05

0.1

0.15

0.2

deviance

2

4

6

8

Bugs model at "5", fit using jags, 3 chains, each with 2000 iterations (first 1000 discarded)

11 / 26

Moving on to SIMMs - what do the data look like?

▶ Let’s start with a very simple version:
▶ 1 isotope
▶ 2 food sources
▶ 9 consumers
▶ No other complications

▶ We’ll use some of the Geese data that was originally from the SIAR package but is
now bundled in simmr

12 / 26

Plotting the data
▶ Use the second isotope (δ13C) and the first two food sources (Zostera and Grass)
▶ Create a plot:

Load in the data
data("geese_data_day1")
consumers = geese_data_day1$mixtures[,1]
source_means = geese_data_day1$source_means[1:2,1]
source_sds = geese_data_day1$source_sds[1:2,1]
con_grid = seq(-35,-5,length=100)
plot(con_grid,dnorm(con_grid,

mean=source_means[2],sd=source_sds[2]),
type='l',col='red',xlab='d13C',ylab='Probability density')

lines(con_grid,dnorm(con_grid
,mean=source_means[1],sd=source_sds[1]),

col='blue')
points(consumers,rep(0,9))
legend('topright',legend=c('Grass','Zostera','Consumers'),

lty=c(1,1,-1),pch=c(-1,-1,1),col=c('red','blue','black'))
13 / 26

A simple isospace plot

−35 −30 −25 −20 −15 −10 −5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

d13C

P
ro

ba
bi

lit
y

de
ns

ity

Grass
Zostera
Consumers

14 / 26

A first model for this simple SIMM

▶ Let yi be the δ13C value for individual i , i = 1, . . . , 9
▶ Let sk be the source value for source k, k = 1, 2
▶ Let pk be the dietary proportion for source k

The likelihood can now be written as:

yi = p1 × s1 + p2 × s2 + ϵi or yi ∼ N
(2∑

k=1
pksk , σ2

)

so just like a regression model with a slightly different mean!

ϵi ∼ N(0, σ2) as usual, though including this term is (strangely) controversial

15 / 26

Prior distributions for the SIMM

▶ The parameters for this simple model are s1, s2, p1, p2, and σ
▶ We have external data on the sk values, so it makes sense to put a prior distribution

sk ∼ N(µsk , σ2
sk) on each of these

▶ The dietary proportions must sum to 1, i.e. p2 = 1 − p1 so we have only have 1
parameter to place a prior on. We might use p1 ∼ U(0, 1) if no prior knowledge.

▶ An alternative is the Beta distribution which can put more weight on lower or
higher proportions

▶ We usually have little information on σ, but the isospace plot will usually give a
rough guide to the likely range of values

16 / 26

A simple SIMM in JAGS
model_code ='
model {

for(i in 1:N) {
y[i] ~ dnorm(p_1*s_1+p_2*s_2,sigmaˆ-2)

}
p_1 ~ dunif(0,1)
p_2 <- 1-p_1
s_1 ~ dnorm(s_1_mean,s_1_sdˆ-2)
s_2 ~ dnorm(s_2_mean,s_2_sdˆ-2)
sigma ~ dunif(0,10)

}
'
data=list(y=consumers,s_1_mean=source_means[1],

s_1_sd=source_sds[1],
s_2_mean=source_means[2],s_2_sd=source_sds[2],
N=length(consumers))

model_parameters = c('p_1', 'p_2')
model_run = jags(data = data,

parameters.to.save = model_parameters,
model.file = textConnection(model_code))

17 / 26

Summarising the output
hist(model_run$BUGSoutput$sims.list$p_1,

xlim = c(0, 1),
xlab='Proportion',
ylab='Probability density',
main='Proportion of Zostera')

Proportion of Zostera

Proportion

P
ro

ba
bi

lit
y

de
ns

ity

0.0 0.2 0.4 0.6 0.8 1.0

0
20

0
50

0

18 / 26

Model checking and convergence

▶ How do you know whether the model fits the data well or not?
▶ How do you know that JAGS fitted the model OK?
▶ The model fit can be checked by running cross-validation (leaving out chunks of the

data and getting the model to predict the y values of the left out data) or posterior
predictive checks, amongst many other methods

▶ The fitting performance can be evaluated via convergence checking. This involves
looking at the posterior samples and checking that the values are stable

▶ Another question (which we will look at in a later session) is whether this is the
‘best’ model for the data

19 / 26

Model checking

▶ Adding a posterior predictive check is as simple as adding an extra line to the JAGS
code

model_code ='
...
for(i in 1:N) {

y[i] ~ dnorm(p_1*s_1+p_2*s_2,sigmaˆ-2)
y_pred[i] ~ dnorm(p_1*s_1+p_2*s_2,sigmaˆ-2)

}
...

'

▶ y_pred is included as another parameter, and is thus estimated as part of the
model.

▶ We then have both the true y values and some estimated y values from the model

20 / 26

Model checking output
y_pred_quantiles = apply(model_run$BUGSoutput$sims.list$y_pred,

2,'quantile',
probs=c(0.25,0.75))

round(cbind(data$y,t(y_pred_quantiles)),2)

25% 75%
[1,] -11.36 -12.74 -10.70
[2,] -11.88 -12.62 -10.66
[3,] -10.60 -12.77 -10.72
[4,] -11.25 -12.73 -10.68
[5,] -11.66 -12.70 -10.68
[6,] -10.41 -12.68 -10.67
[7,] -10.88 -12.67 -10.69
[8,] -14.73 -12.67 -10.64
[9,] -11.52 -12.72 -10.73

4/9 observations outside the 50% CI. Looks to be an OK model.

21 / 26

Convergence checking

▶ When JAGS runs a model it creates initial guesses of the parameter values and then creates
many consecutive samples moving away from the initial values towards the true posterior
distribution

▶ Mathematical theory says that the samples must eventually come from the posterior
distribution but this may take a very long time!

▶ Another method for ensuring convergence is to start JAGS with multiple different starting
values and see if each model run (known as a chain) converges to the same posterior
distribution

22 / 26

Convergence checking 2

▶ You can start by plotting the output from JAGS:
R2jags::traceplot(model_run, varname = 'p_1')

0.
80

0.
90

1.
00

p_1

iteration

p_
1

100 200 300 400 500 600 700 800 900 1000

23 / 26

Convergence checking 3

▶ The different colours show the three chains. The location and variability should be
broadly the same between chains

▶ There are some useful statistical tests for convergence, including the Geweke test
which looks to see whether the mean is stable in each half of the iterations, or the
Brooks, Gelman, Rubin (BGR or Rhat) test which looks to see whether different
chains match.

▶ Both simmr and MixSIAR use the Rhat statistic
▶ The Rhat test is best if you have multiple chains

24 / 26

Convergence checking 4

▶ If you started by choosing bad initial values you might want to remove an initial
chunk of the samples. This is known as the burn in and can be set using the
n.burnin command in the jags function call

▶ Ideally the samples from the posterior distribution should be independent. If the
algorithm isn’t working well you can thin them out with the n.thin argument in
the jags function. The auto-correlation plot produced by acf in R can tell you
whether you need to thin or not

▶ Finally, we need to choose the number of iterations. For very simple models 1,000
is usually fine, but for very complicated models you can sometimes need hundreds
of thousands or millions. 10,000 is usually a good number for most problems. You
can set the number of iterations in JAGS with n.iter

simmr/MixSIAR have their own commands for dealing with burn-in/thinning/iterations

25 / 26

Summary

▶ A SIMM is very similar to a linear regression. Things get slightly more complicated
when we move to multiple isotopes

▶ The priors for a SIMM involve distributions for the source values, the dietary
proportions, and the residual standard deviation

▶ When running a Bayesian model, remember to check your model (if possible) using
posterior predictive checks, and convergence checking

26 / 26

