
The statistical model behind simmr (and SIAR)

Andrew Parnell

1 / 24

Learning outcomes:

▶ Understand the statistical model behind simmr/SIAR
▶ Know how to run a model in simmr/SIAR and check that it works
▶ Be able to follow the technical details of the 2010 SIAR Plos ONE paper

2 / 24

Our simple SIMM

▶ In the last class we had a simple SIMM defined via:

yi ∼ N
(2∑

k=1
pksk , σ2

)

with sk ∼ N(µsk , σ2
sk), p1 ∼ U(0, 1) and σ ∼ U(0, 100)

▶ Here yi is the isotope value, s are the source values, p are the dietary proportions,
and σ is the residual standard deviation

▶ The goal is to estimate the p and its uncertainty. The other parameters can be
considered nuisance parameters

3 / 24

Expanding the simple SIMM

▶ This SIMM is currently too simplistic. We need to expand it by:
▶ increasing the number of food sources
▶ including trophic enrichment factors (TEFs)
▶ including concentration dependence
▶ allowing for multiple isotopes
▶ allowing for richer source sampling by consumers

▶ If we include all of these factors we end up with the simmr/SIAR model
▶ We will take them in turn and add them into our JAGS code

4 / 24

Reminder: the SIAR geese data
data(geese_data_day1)
str(geese_data_day1)

List of 8
$ mixtures : num [1:9, 1:2] -11.4 -11.9 -10.6 -11.2 -11.7 ...
..- attr(*, "dimnames")=List of 2
.. ..$: NULL
.. ..$: chr [1:2] "d13C_Pl" "d15N_Pl"
$ tracer_names : chr [1:2, 1] "d13C_Pl" "d15N_Pl"
$ source_names : chr [1:4] "Zostera" "Grass" "U.lactuca" "Enteromorpha"
$ source_means : num [1:4, 1:2] -11.17 -30.88 -11.17 -14.06 6.49 ...
..- attr(*, "dimnames")=List of 2
.. ..$: NULL
.. ..$: chr [1:2] "meand13CPl" "meand15NPl"
$ source_sds : num [1:4, 1:2] 1.215 0.641 1.959 1.172 1.459 ...
..- attr(*, "dimnames")=List of 2
.. ..$: NULL
.. ..$: chr [1:2] "SDd13C" "SDd15N"
$ correction_means : num [1:4, 1:2] 1.63 1.63 1.63 1.63 3.54 3.54 3.54 3.54
..- attr(*, "dimnames")=List of 2
.. ..$: NULL
.. ..$: chr [1:2] "meand13CPl" "meand15NPl"
$ correction_sds : num [1:4, 1:2] 0.63 0.63 0.63 0.63 0.74 0.74 0.74 0.74
..- attr(*, "dimnames")=List of 2
.. ..$: NULL
.. ..$: chr [1:2] "SDd13C" "SDd15N"
$ concentration_means: num [1:4, 1:2] 0.3593 0.4026 0.2098 0.1844 0.0297 ...
..- attr(*, "dimnames")=List of 2
.. ..$: NULL
.. ..$: chr [1:2] "d13CPl" "d15NPl"

5 / 24

Plotting the data
A plot in isotope space:
plot(simmr_in)

7.5

10.0

12.5

15.0

−30 −25 −20 −15 −10
d13C_Pl

d1
5N

_P
l

Mixtures

Zostera

Grass

U.lactuca

Enteromorpha

Tracers plot

6 / 24

Including multiple sources

▶ Adding in multiple sources to the likelihood means having more terms in the sum:

yi ∼ N
(K∑

k=1
pksk , σ2

)

▶ In the above we have K sources and hence K dietary proportions
▶ We also now need K source prior distributions
▶ The tricky part about adding in multiple proportions is the prior distribution

7 / 24

Priors for constrained dietary proportions

▶ We must have
∑K

k=1 pk = 1 so any prior distribution we place on the ps must
satisfy this restriction

▶ (You will often hear values restricted in sum referred to as a simplex)
▶ Luckily there is a distribution known as the Dirichlet which is suitable for restricted

sum parameters
▶ The Dirichlet has one parameter for each proportion α1, . . . , αK . The larger the α

value the larger prior weight that dietary proportion will be given
▶ Setting all the α values to 1 is equivalent to the simplex uniform distribution, i.e. a

prior assumption that all sources are consumed equally

8 / 24

JAGS SIMM with a Dirichlet prior
model_code ='
model {

for(i in 1:N) { y[i] ~ dnorm(inprod(p,s),sigmaˆ-2) }
p ~ ddirch(alpha)
for(k in 1:K) { s[k] ~ dnorm(s_mean[k],s_sd[k]ˆ-2) }
sigma ~ dunif(0,100)

}
'
data=with(geese_data_day1,

list(y=mixtures[,1],
s_mean=source_means[,1],
s_sd=source_sds[,1],

N = nrow(mixtures),K=nrow(source_means),
alpha=rep(1,nrow(source_means))))

set.seed(123)
model_run = jags(data = data,

parameters.to.save = c("p", "sigma"),
model.file = textConnection(model_code))

9 / 24

Results

▶ We can explore/plot results with summary(output), plot(output), and also run multiple
chains, form predictive distributions, check convergence, etc

▶ One important thing to note is that the fitting method (MCMC) produces a joint posterior
distribution of the dietary proportions. This means that each set of samples will sum to 1:

head(model_run$BUGSoutput$sims.matrix,4)

deviance p[1] p[2] p[3] p[4] sigma
[1,] 29.23629 0.3204568 0.0019424391 0.01318021 0.6644206 1.377550
[2,] 37.17430 0.2174371 0.0173032128 0.24982149 0.5154382 2.681949
[3,] 30.39808 0.1113302 0.0335637310 0.48461065 0.3704955 1.456621
[4,] 31.57700 0.1490726 0.0002764103 0.37634643 0.4743046 1.858569

▶ The key implication of this is that, aside from exploring the marginal posterior distributions
(with means, sds, etc) we can explore the joint uncertainty of the dietary proportions

10 / 24

A joint plot of the posterior dietary proportions
out_2 = model_run$BUGSoutput$sims.list$p
colnames(out_2) = geese_data_day1$source_names
pairs(out_2, lower.panel = panel.smooth,

upper.panel = panel.cor)

Zostera

0.
00

0.
15

0.0 0.2 0.4 0.6 0.8

0.
0

0.
4

0.
8

0.00 0.05 0.10 0.15 0.20

0.12

Grass

0.80
0.22

U.lactuca

0.0 0.2 0.4 0.6 0.8

0.0 0.2 0.4 0.6 0.8

0.
0

0.
4

0.
8

0.31

0.37

0.
0

0.
6

0.30

Enteromorpha

11 / 24

Trophic enrichment factors and concentration dependence

▶ Trophic enrichment factors (c) and concentration dependence (q) represent
adjustments to the source values to account for various measurement effects

▶ We can include them by expanding the likelihood:

yi ∼ N
(∑K

k=1 pkqk(sk + ck)∑K
k=1 pkqk

, σ2
)

▶ The extra part on the denominator is needed so that the dietary proportions still
sum to 1

▶ The prior for ck comes from external data and are given normal distributions like
the source values

▶ In SIAR/simmr the concentration dependencies must be less than 1 (given as
proportions) and are treated as fixed

12 / 24

Including TEFs and CD - JAGS model
model_code ='
model {

for(i in 1:N) {
y[i] ~ dnorm(inprod(p*q,s+c)/inprod(p,q),sigmaˆ-2)

}
p ~ ddirch(alpha)
for(k in 1:K) {

s[k] ~ dnorm(s_mean[k],s_sd[k]ˆ-2)
c[k] ~ dnorm(c_mean[k],c_sd[k]ˆ-2)

}
sigma ~ dunif(0,100)

}
'
data=with(geese_data_day1,

list(y=mixtures[,1], s_mean=source_means[,1],
s_sd=source_sds[,1], c_mean = correction_means[,1],
c_sd = correction_sds[,1], q = concentration_means[,1],

N = nrow(mixtures),K=nrow(source_means),
alpha=rep(1,length(source_names))))

model_run = jags(data = data,
parameters.to.save = c("p"),
model.file = textConnection(model_code))

13 / 24

Notes on the TEF and CD model

▶ If you run this, you’ll find that convergence isn’t quite as neat and it starts to get a
bit slower

▶ Although it’s a nuisance parameter, saving sigma is often a good idea because a
large value indicates a poorly fitting model (usually also seen in the iso-space plot)

▶ The model will also create posterior distributions for s and c, though these are
usually pretty similar to the prior, as there isn’t much information about their
values in the data

14 / 24

Adding extra isotopes

▶ If we have extra isotopes we can just repeat the likelihood multiple times, once for
each value of the isotope. Only the dietary proportions are ‘shared’ between the
isotopes

▶ Now write yij as the consumer values for observation i on isotope j , where
j = 1, . . . , J

▶ We now have source values sjk , TEF values cjk , concentration dependencies qjk ,
and each isotope has its own residual standard deviation σj

▶ The likelihood is now:

yij ∼ N
(∑K

k=1 pkqjk(sjk + cjk)∑K
k=1 pkqjk

, σ2
j

)

15 / 24

Richer source sampling
▶ The model we’ve been fitting up to now assumes that all individuals sample the

same source value skj for each source and isotope. This is unrealistic
▶ A better model has each individual sampling a different source value from the

source prior distribution, i.e. we now have sikj
▶ The JAGS code becomes:

for(k in 1:K) {
for(i in 1:N) {

for(j in 1:J) {
s[i,k,j] ~ dnorm(s_mean[k,j],s_sd[k,j]ˆ-2)

}
}

}

▶ We can do the same with the trophic enrichment factors
▶ In fact with a bit of clever maths we can remove (marginalise over) the sik values

to get a simpler model with fewer parameters.
16 / 24

The full simmr/SIAR model

▶ Using the trick mentioned on the last slide, we end up with a full model which
looks like this:

yij ∼ N
(∑K

k=1 pkqjk(µs,jk + µc,jk)∑K
k=1 pkqjk

,

∑K
k=1 p2

kq2
jk(σ2

s,jk + σ2
c,jk)

(
∑K

k=1 pkqjk)2
+ σ2

j

)

▶ This model has a more complicated likelihood, but removes the extra s and c
parameters

17 / 24

Full SIAR model: JAGS code
model_code ='
model {

for (i in 1:N) {
for (j in 1:J) {

y[i,j] ~ dnorm(inprod(p*q[,j], s_mean[,j]+c_mean[,j]) /
inprod(p,q[,j]), var_y[j]ˆ-1)

}
}
p ~ ddirch(alpha)
for(j in 1:J) {

var_y[j] <- inprod(pow(p*q[,j],2),s_sd[,j]ˆ2+c_sd[,j]ˆ2)/pow(inprod(p,q[,j]),2)
+ pow(sigma[j],2)

}
for(j in 1:J) { sigma[j] ~ dunif(0,100) }

}
'

18 / 24

Full simmr/SIAR model: R code

data=with(geese_data_day1,
list(y=mixtures,s_mean=source_means,
s_sd=source_sds,
c_mean=correction_means,c_sd=correction_sds,
q=concentration_means,N=nrow(mixtures),
J=ncol(mixtures),alpha=rep(1,length(source_names))))

model_run = jags(data = data,
parameters.to.save = c("p", "sigma"),
model.file = textConnection(model_code),
DIC = FALSE)

19 / 24

Summary of posterior dietary proportions

out_2 = model_run$BUGSoutput$sims.matrix
colnames(out_2) = c(geese_data_day1$source_names,'SD1','SD2')
t(round(apply(out_2,2,quantile,probs=c(0.025,0.5,0.975)),2))

2.5% 50% 97.5%
Zostera 0.41 0.61 0.80
Grass 0.01 0.07 0.12
U.lactuca 0.01 0.13 0.35
Enteromorpha 0.02 0.15 0.52
SD1 0.06 0.87 2.41
SD2 0.02 0.40 1.50

Some of these proportions are quite imprecise: perhaps see better with matrix plot?

20 / 24

Running SIAR/simmr

▶ The SIAR/simmr R packages run exactly this model with a few extra tweaks
▶ SIAR contained a slightly optimised algorithm as JAGS used to get a bit stuck on

harder data sets.
▶ SIAR allows for direct plotting of the data in isotope space and p-space (i.e. dietary

proportion space - pairs plots)
▶ SIAR allows for changing the α values to put in proper prior information
▶ SIAR includes convergence checking
▶ But don’t use that anymore! Instead. . .

21 / 24

simmr version

▶ simmr is a much more elegantly written version of SIAR with neater plots and
many more features

▶ Four steps to run a simmr model
1. Call simmr_load to load in the data
2. Call plot to see the iso-space plot
3. Call simmr_mcmc to run the model
4. Check convergence using summary
5. Call plot or summary to access the output

▶ simmr has further features to combine sources and to compare dietary proportions

22 / 24

simmr code
Load
data("geese_data_day1")
simmr_in = with(geese_data_day1,

simmr_load(mixtures = mixtures,
source_names = source_names,
source_means = source_means,
source_sds = source_sds,
correction_means = correction_means,
correction_sds = correction_sds,
concentration_means = concentration_means))

Iso-space plot
plot(simmr_in)
MCMC run
simmr_out = simmr_mcmc(simmr_in)
Box-plots
plot(simmr_out, type = 'boxplot')

23 / 24

Summary

▶ The simmr and SIAR models are just complicated versions of linear regression
▶ The response is multivariate and the prior distributions on some of the parameters

have to be constrained to sum to 1
▶ It used to be the case that JAGS was slow and couldn’t run SIMM-type models.

This is no longer true. You can fit much richer models in JAGS (and now MixSIAR)
than with SIAR/simmr

▶ The MixSIAR is an order of complexity again as it uses ideas from generalised linear
models to include covariates on the dietary proportions

24 / 24

