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Learning outcomes:

▶ Understand the statistical model behind simmr/SIAR
▶ Know how to run a model in simmr/SIAR and check that it works
▶ Be able to follow the technical details of the 2010 SIAR Plos ONE paper
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Our simple SIMM

▶ In the last class we had a simple SIMM defined via:

yi ∼ N
( 2∑

k=1
pksk , σ2

)

with sk ∼ N(µsk , σ2
sk ), p1 ∼ U(0, 1) and σ ∼ U(0, 100)

▶ Here yi is the isotope value, s are the source values, p are the dietary proportions,
and σ is the residual standard deviation

▶ The goal is to estimate the p and its uncertainty. The other parameters can be
considered nuisance parameters

3 / 24



Expanding the simple SIMM

▶ This SIMM is currently too simplistic. We need to expand it by:
▶ increasing the number of food sources
▶ including trophic enrichment factors (TEFs)
▶ including concentration dependence
▶ allowing for multiple isotopes
▶ allowing for richer source sampling by consumers

▶ If we include all of these factors we end up with the simmr/SIAR model
▶ We will take them in turn and add them into our JAGS code
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Reminder: the SIAR geese data
data(geese_data_day1)
str(geese_data_day1)

## List of 8
## $ mixtures : num [1:9, 1:2] -11.4 -11.9 -10.6 -11.2 -11.7 ...
## ..- attr(*, "dimnames")=List of 2
## .. ..$ : NULL
## .. ..$ : chr [1:2] "d13C_Pl" "d15N_Pl"
## $ tracer_names : chr [1:2, 1] "d13C_Pl" "d15N_Pl"
## $ source_names : chr [1:4] "Zostera" "Grass" "U.lactuca" "Enteromorpha"
## $ source_means : num [1:4, 1:2] -11.17 -30.88 -11.17 -14.06 6.49 ...
## ..- attr(*, "dimnames")=List of 2
## .. ..$ : NULL
## .. ..$ : chr [1:2] "meand13CPl" "meand15NPl"
## $ source_sds : num [1:4, 1:2] 1.215 0.641 1.959 1.172 1.459 ...
## ..- attr(*, "dimnames")=List of 2
## .. ..$ : NULL
## .. ..$ : chr [1:2] "SDd13C" "SDd15N"
## $ correction_means : num [1:4, 1:2] 1.63 1.63 1.63 1.63 3.54 3.54 3.54 3.54
## ..- attr(*, "dimnames")=List of 2
## .. ..$ : NULL
## .. ..$ : chr [1:2] "meand13CPl" "meand15NPl"
## $ correction_sds : num [1:4, 1:2] 0.63 0.63 0.63 0.63 0.74 0.74 0.74 0.74
## ..- attr(*, "dimnames")=List of 2
## .. ..$ : NULL
## .. ..$ : chr [1:2] "SDd13C" "SDd15N"
## $ concentration_means: num [1:4, 1:2] 0.3593 0.4026 0.2098 0.1844 0.0297 ...
## ..- attr(*, "dimnames")=List of 2
## .. ..$ : NULL
## .. ..$ : chr [1:2] "d13CPl" "d15NPl"
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Plotting the data
A plot in isotope space:
plot(simmr_in)
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Including multiple sources

▶ Adding in multiple sources to the likelihood means having more terms in the sum:

yi ∼ N
( K∑

k=1
pksk , σ2

)

▶ In the above we have K sources and hence K dietary proportions
▶ We also now need K source prior distributions
▶ The tricky part about adding in multiple proportions is the prior distribution
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Priors for constrained dietary proportions

▶ We must have
∑K

k=1 pk = 1 so any prior distribution we place on the ps must
satisfy this restriction

▶ (You will often hear values restricted in sum referred to as a simplex)
▶ Luckily there is a distribution known as the Dirichlet which is suitable for restricted

sum parameters
▶ The Dirichlet has one parameter for each proportion α1, . . . , αK . The larger the α

value the larger prior weight that dietary proportion will be given
▶ Setting all the α values to 1 is equivalent to the simplex uniform distribution, i.e. a

prior assumption that all sources are consumed equally
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JAGS SIMM with a Dirichlet prior
model_code ='
model {

for(i in 1:N) { y[i] ~ dnorm(inprod(p,s),sigmaˆ-2) }
p ~ ddirch(alpha)
for(k in 1:K) { s[k] ~ dnorm(s_mean[k],s_sd[k]ˆ-2) }
sigma ~ dunif(0,100)

}
'
data=with(geese_data_day1,

list(y=mixtures[,1],
s_mean=source_means[,1],
s_sd=source_sds[,1],

N = nrow(mixtures),K=nrow(source_means),
alpha=rep(1,nrow(source_means))))

set.seed(123)
model_run = jags(data = data,

parameters.to.save = c("p", "sigma"),
model.file = textConnection(model_code))
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Results

▶ We can explore/plot results with summary(output), plot(output), and also run multiple
chains, form predictive distributions, check convergence, etc

▶ One important thing to note is that the fitting method (MCMC) produces a joint posterior
distribution of the dietary proportions. This means that each set of samples will sum to 1:

head(model_run$BUGSoutput$sims.matrix,4)

## deviance p[1] p[2] p[3] p[4] sigma
## [1,] 29.23629 0.3204568 0.0019424391 0.01318021 0.6644206 1.377550
## [2,] 37.17430 0.2174371 0.0173032128 0.24982149 0.5154382 2.681949
## [3,] 30.39808 0.1113302 0.0335637310 0.48461065 0.3704955 1.456621
## [4,] 31.57700 0.1490726 0.0002764103 0.37634643 0.4743046 1.858569

▶ The key implication of this is that, aside from exploring the marginal posterior distributions
(with means, sds, etc) we can explore the joint uncertainty of the dietary proportions
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A joint plot of the posterior dietary proportions
out_2 = model_run$BUGSoutput$sims.list$p
colnames(out_2) = geese_data_day1$source_names
pairs(out_2, lower.panel = panel.smooth,

upper.panel = panel.cor)
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Trophic enrichment factors and concentration dependence

▶ Trophic enrichment factors (c) and concentration dependence (q) represent
adjustments to the source values to account for various measurement effects

▶ We can include them by expanding the likelihood:

yi ∼ N
(∑K

k=1 pkqk(sk + ck)∑K
k=1 pkqk

, σ2
)

▶ The extra part on the denominator is needed so that the dietary proportions still
sum to 1

▶ The prior for ck comes from external data and are given normal distributions like
the source values

▶ In SIAR/simmr the concentration dependencies must be less than 1 (given as
proportions) and are treated as fixed
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Including TEFs and CD - JAGS model
model_code ='
model {

for(i in 1:N) {
y[i] ~ dnorm(inprod(p*q,s+c)/inprod(p,q),sigmaˆ-2)

}
p ~ ddirch(alpha)
for(k in 1:K) {

s[k] ~ dnorm(s_mean[k],s_sd[k]ˆ-2)
c[k] ~ dnorm(c_mean[k],c_sd[k]ˆ-2)

}
sigma ~ dunif(0,100)

}
'
data=with(geese_data_day1,

list(y=mixtures[,1], s_mean=source_means[,1],
s_sd=source_sds[,1], c_mean = correction_means[,1],
c_sd = correction_sds[,1], q = concentration_means[,1],

N = nrow(mixtures),K=nrow(source_means),
alpha=rep(1,length(source_names))))

model_run = jags(data = data,
parameters.to.save = c("p"),
model.file = textConnection(model_code))
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Notes on the TEF and CD model

▶ If you run this, you’ll find that convergence isn’t quite as neat and it starts to get a
bit slower

▶ Although it’s a nuisance parameter, saving sigma is often a good idea because a
large value indicates a poorly fitting model (usually also seen in the iso-space plot)

▶ The model will also create posterior distributions for s and c, though these are
usually pretty similar to the prior, as there isn’t much information about their
values in the data
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Adding extra isotopes

▶ If we have extra isotopes we can just repeat the likelihood multiple times, once for
each value of the isotope. Only the dietary proportions are ‘shared’ between the
isotopes

▶ Now write yij as the consumer values for observation i on isotope j , where
j = 1, . . . , J

▶ We now have source values sjk , TEF values cjk , concentration dependencies qjk ,
and each isotope has its own residual standard deviation σj

▶ The likelihood is now:

yij ∼ N
(∑K

k=1 pkqjk(sjk + cjk)∑K
k=1 pkqjk

, σ2
j

)
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Richer source sampling
▶ The model we’ve been fitting up to now assumes that all individuals sample the

same source value skj for each source and isotope. This is unrealistic
▶ A better model has each individual sampling a different source value from the

source prior distribution, i.e. we now have sikj
▶ The JAGS code becomes:

for(k in 1:K) {
for(i in 1:N) {

for(j in 1:J) {
s[i,k,j] ~ dnorm(s_mean[k,j],s_sd[k,j]ˆ-2)

}
}

}

▶ We can do the same with the trophic enrichment factors
▶ In fact with a bit of clever maths we can remove (marginalise over) the sik values

to get a simpler model with fewer parameters.
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The full simmr/SIAR model

▶ Using the trick mentioned on the last slide, we end up with a full model which
looks like this:

yij ∼ N
(∑K

k=1 pkqjk(µs,jk + µc,jk)∑K
k=1 pkqjk

,

∑K
k=1 p2

kq2
jk(σ2

s,jk + σ2
c,jk)

(
∑K

k=1 pkqjk)2
+ σ2

j

)

▶ This model has a more complicated likelihood, but removes the extra s and c
parameters
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Full SIAR model: JAGS code
model_code ='
model {

for (i in 1:N) {
for (j in 1:J) {

y[i,j] ~ dnorm(inprod(p*q[,j], s_mean[,j]+c_mean[,j]) /
inprod(p,q[,j]), var_y[j]ˆ-1)

}
}
p ~ ddirch(alpha)
for(j in 1:J) {

var_y[j] <- inprod(pow(p*q[,j],2),s_sd[,j]ˆ2+c_sd[,j]ˆ2)/pow(inprod(p,q[,j]),2)
+ pow(sigma[j],2)

}
for(j in 1:J) { sigma[j] ~ dunif(0,100) }

}
'
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Full simmr/SIAR model: R code

data=with(geese_data_day1,
list(y=mixtures,s_mean=source_means,
s_sd=source_sds,
c_mean=correction_means,c_sd=correction_sds,
q=concentration_means,N=nrow(mixtures),
J=ncol(mixtures),alpha=rep(1,length(source_names))))

model_run = jags(data = data,
parameters.to.save = c("p", "sigma"),
model.file = textConnection(model_code),
DIC = FALSE)
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Summary of posterior dietary proportions

out_2 = model_run$BUGSoutput$sims.matrix
colnames(out_2) = c(geese_data_day1$source_names,'SD1','SD2')
t(round(apply(out_2,2,quantile,probs=c(0.025,0.5,0.975)),2))

## 2.5% 50% 97.5%
## Zostera 0.41 0.61 0.80
## Grass 0.01 0.07 0.12
## U.lactuca 0.01 0.13 0.35
## Enteromorpha 0.02 0.15 0.52
## SD1 0.06 0.87 2.41
## SD2 0.02 0.40 1.50

Some of these proportions are quite imprecise: perhaps see better with matrix plot?
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Running SIAR/simmr

▶ The SIAR/simmr R packages run exactly this model with a few extra tweaks
▶ SIAR contained a slightly optimised algorithm as JAGS used to get a bit stuck on

harder data sets.
▶ SIAR allows for direct plotting of the data in isotope space and p-space (i.e. dietary

proportion space - pairs plots)
▶ SIAR allows for changing the α values to put in proper prior information
▶ SIAR includes convergence checking
▶ But don’t use that anymore! Instead. . .
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simmr version

▶ simmr is a much more elegantly written version of SIAR with neater plots and
many more features

▶ Four steps to run a simmr model
1. Call simmr_load to load in the data
2. Call plot to see the iso-space plot
3. Call simmr_mcmc to run the model
4. Check convergence using summary
5. Call plot or summary to access the output

▶ simmr has further features to combine sources and to compare dietary proportions
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simmr code
# Load
data("geese_data_day1")
simmr_in = with(geese_data_day1,

simmr_load(mixtures = mixtures,
source_names = source_names,
source_means = source_means,
source_sds = source_sds,
correction_means = correction_means,
correction_sds = correction_sds,
concentration_means = concentration_means))

# Iso-space plot
plot(simmr_in)
# MCMC run
simmr_out = simmr_mcmc(simmr_in)
# Box-plots
plot(simmr_out, type = 'boxplot')
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Summary

▶ The simmr and SIAR models are just complicated versions of linear regression
▶ The response is multivariate and the prior distributions on some of the parameters

have to be constrained to sum to 1
▶ It used to be the case that JAGS was slow and couldn’t run SIMM-type models.

This is no longer true. You can fit much richer models in JAGS (and now MixSIAR)
than with SIAR/simmr

▶ The MixSIAR is an order of complexity again as it uses ideas from generalised linear
models to include covariates on the dietary proportions
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