R/posterior_predictive.simmr_output.R
posterior_predictive.Rd
This function takes the output from simmr_mcmc
and plots the
posterior predictive distribution to enable visualisation of model fit.
The simulated posterior predicted values are returned as part of the
object and can be saved for external use
posterior_predictive(simmr_out, group = 1, prob = 0.5, plot_ppc = TRUE)
A run of the simmr model from simmr_mcmc
Which group to run it for (currently only numeric rather than group names)
The probability interval for the posterior predictives. The default is 0.5 (i.e. 50pc intervals)
Whether to create a bayesplot of the posterior predictive or not.
plot of posterior predictives and simulated values
# \donttest{
data(geese_data_day1)
simmr_1 <- with(
geese_data_day1,
simmr_load(
mixtures = mixtures,
source_names = source_names,
source_means = source_means,
source_sds = source_sds,
correction_means = correction_means,
correction_sds = correction_sds,
concentration_means = concentration_means
)
)
# Plot
plot(simmr_1)
# Print
simmr_1
#> This is a valid simmr input object with
#> 9 observations,
#> 2 tracers, and
#> 4 sources.
#> The source names are:
#> [1] "Zostera" "Grass" "U.lactuca" "Enteromorpha"
#> .
#> The tracer names are:
#> [1] "d13C_Pl" "d15N_Pl"
#>
#>
# MCMC run
simmr_1_out <- simmr_mcmc(simmr_1)
#> Compiling model graph
#> Resolving undeclared variables
#> Allocating nodes
#> Graph information:
#> Observed stochastic nodes: 18
#> Unobserved stochastic nodes: 6
#> Total graph size: 136
#>
#> Initializing model
#>
# Prior predictive
post_pred <- posterior_predictive(simmr_1_out)
#> Compiling model graph
#> Resolving undeclared variables
#> Allocating nodes
#> Graph information:
#> Observed stochastic nodes: 18
#> Unobserved stochastic nodes: 24
#> Total graph size: 154
#>
#> Initializing model
#>
# }